

Mark Scheme Summer 2009

GCE

GCE Mathematics (8371/8374; 9371/9374)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/ Aboutus/ contact-us/

Summer 2009
Publications Code UA021531
All the material in this publication is copyright
© Edexcel Ltd 2009

Contents

1.	6663 Core Mathematics 1	5
2.	6664 Core Mathematics 2	17
3.	6665 Core Mathematics 3	27
4.	6666 Core Mathematics 4	39
5.	6667 Further Pure Mathematics 1 (new)	47
6.	6668 Further Pure Mathematics 2 (new)	55
7.	6669 Further Pure Mathematics 3 (new)	65
8.	6674 Further Pure Mathematics 1 (legacy)	73
9.	6675 Further Pure Mathematics 2 (legacy)	81
10.	6676 Further Pure Mathematics 3 (legacy)	87
11.	6677 Mechanics 1	93
12.	6678 Mechanics 2	97
13.	6679 Mechanics 3	103
14.	6680 Mechanics 4	109
15.	6681 Mechanics 5	115
16.	6683 Statistics 1	121
17.	6684 Statistics 2	129
18.	6691 Statistics 3	137
19.	6686 Statistics 4	145
20.	6689 Decision Mathematics 1	151
21	6690 Decision Mathematics 2	161

June 2009 6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme	Marl	ks
Q1 (a) (b)	$(3\sqrt{7})^2 = 63$ $(8+\sqrt{5})(2-\sqrt{5}) = 16-5+2\sqrt{5}-8\sqrt{5}$ $= 11, -6\sqrt{5}$	B1 M1 A1, A1	(1) (3) [4]
(a) (b)	B1 for 63 only for an attempt to expand their brackets with ≥ 3 terms correct. They may collect the $\sqrt{5}$ terms to get $16-5-6\sqrt{5}$ Allow $-\sqrt{5}\times\sqrt{5}$ or $-\left(\sqrt{5}\right)^2$ or $-\sqrt{25}$ instead of the -5 These 4 values may appear in a list or table but they should have minus signs included The next two marks should be awarded for the final answer but check that correct values follow from correct working. Do not use ISW rule 1^{st} A1 for 11 from $16-5$ or $-6\sqrt{5}$ from $-8\sqrt{5}+2\sqrt{5}$ 2^{nd} A1 for both 11 and $-6\sqrt{5}$. S.C - Double sign error in expansion For $16-5-2\sqrt{5}+8\sqrt{5}$ leading to $11+\ldots$ allow one mark		

Question Number	Scheme	Marks
Q2	$32 = 2^5$ or $2048 = 2^{11}$, $\sqrt{2} = 2^{\frac{1}{2}}$ or $\sqrt{2048} = (2048)^{\frac{1}{2}}$ $a = \frac{11}{2}$ (or $5\frac{1}{2}$ or 5.5)	B1, B1
		[3]
	1st B1 for $32 = 2^5$ or $2048 = 2^{11}$ This should be explicitly seen: $32\sqrt{2} = 2^a$ followed by $2^5\sqrt{2} = 2^a$ is OK Even writing $32 \times 2 = 2^5 \times 2 \left(=2^6\right)$ is OK but simply writing $32 \times 2 = 2^6$ is NOT 2^{nd} B1 for $2^{\frac{1}{2}}$ or $(2048)^{\frac{1}{2}}$ seen. This mark may be implied 3^{rd} B1 for answer as written. Need $a = \dots$ so $2^{\frac{11}{2}}$ is B0 $a = \frac{11}{2} \left(\text{or } 5\frac{1}{2} \text{ or } 5.5 \right) \text{ with no working scores full marks.}$ If $a = 5.5$ seen then award 3/3 unless it is clear that the value follows from totally incorrect work. Part solutions: e.g. $2^5\sqrt{2}$ scores the first B1. Special case: If $\sqrt{2} = 2^{\frac{1}{2}}$ is not explicitly seen, but the final answer includes $\frac{1}{2}$, e.g. $a = 2\frac{1}{2}$, $a = 4\frac{1}{2}$, the second B1 is given by implication.	

Ques Num		Scheme		Marks
Q3	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 6x^{-3}$	M1 .	A1 A1 (3)
	(b)	$\frac{dy}{dx} = 6x^2 - 6x^{-3}$ $\frac{2x^4}{4} + \frac{3x^{-1}}{-1}(+C)$	M1 .	
		$\frac{x^4}{2} - 3x^{-1} + C$	A1	(3) [6]
				r - 1
	(a)	M1 for an attempt to differentiate $x^n \to x^{n-1}$ 1 st A1 for $6x^2$		
		2^{nd} A1 for $-6x^{-3}$ or $-\frac{6}{x^3}$ Condone $+$ $-6x^{-3}$ here. Inclusion of $+c$ scores A0 here.		
	(b)	M1 for some attempt to integrate an x term of the given y. $x^n \rightarrow x^{n+1}$		
		1^{st} A1 for both x terms correct but unsimplified- as printed or better. Ignore $+c$ here		
		2^{nd} A1 for both x terms correct and simplified and +c. Accept $-\frac{3}{x}$ but NOT		
		$+-3x^{-1}$		
		Condone the $+c$ appearing on the first (unsimplified) line but missing on the		
		final (simplified) line		
		Apply ISW if a correct answer is seen		
		If part (b) is attempted first and this is clearly labelled then apply the scheme and allow the marks. Otherwise assume the first solution is for part (a).		

Ques		Scheme	١	Vl ark	S
Q4	(a)	$5x > 10$, $x > 2$ [Condone $x > \frac{10}{2} = 2$ for M1A1]	M1,	A1	(2)
	(b)	$(2x+3)(x-4) = 0$, 'Critical values' are $-\frac{3}{2}$ and 4	M1,	A1	
		$-\frac{3}{2} < x < 4$	M1 /	A1ft	
	(c)	2 < x < 4	B1ft		(4) (1) [7]
	(a)	M1 for attempt to collect like terms on each side leading to $ax > b$, or $ax < b$, or $ax = b$			
		Must have a or b correct so eg $3x > 4$ scores M0			
	(b)	1 st M1 for an attempt to factorize or solve to find critical values. Method must potentially give 2 critical values			
		1 st A1 for $-\frac{3}{2}$ and 4 seen. They may write $x < -\frac{3}{2}$, $x < 4$ and still get this A1			
		2 nd M1 for choosing the "inside region" for their critical values 2 nd A1ft follow through their 2 distinct critical values			
		Allow $x > -\frac{3}{2}$ with "or", "\" " $x < 4$ to score M1A0 but "and" or "\cap " score			
		M1A1 $x \in (-\frac{3}{2}, 4)$ is M1A1 but $x \in [-\frac{3}{2}, 4]$ is M1A0. Score M0A0 for a number line or graph only			
	(c)	B1ft Allow if a correct answer is seen or follow through their answer to (a) and their answer to (b) but their answers to (a) and (b) must be regions. Do not follow through single values. If their follow through answer is the empty set accept ∅ or {} or equivalent in words If (a) or (b) are not given then score this mark for cao			
		NB You may see $x \le 4$ (with anything or nothing in-between) $x \le -1.5$ in (b) and empty set in (c) for B1ft Do not award marks for part (b) if only seen in part (c)			
		Use of \leq instead of $<$ (or \geq instead of $>$) loses one accuracy mark only, at first occurrence.			

Ques Num		Scheme	Mark	S
Q5	(a)	$a + 9d = 2400 \qquad a + 39d = 600$	M1	
		$d = \frac{-1800}{30}$ $d = -60$ (accept ± 60 for A1)	M1 A1	(3)
		a - 540 = 2400 $a = 2940$	M1 A1	(2)
	(c)	Total = $\frac{1}{2}n\{2a + (n-1)d\} = \frac{1}{2} \times 40 \times (5880 + 39 \times -60)$ (ft values of a and d)	M1 A1ft	
		$\frac{2}{2} = 70800$	A1cao	(3)
				[8]
		Note: If the sequence is considered 'backwards', an equivalent solution may be given using $d = 60$ with $a = 600$ and $l = 2940$ for part (b). This can still score full marks. Ignore labelling of (a) and (b)		
	(a)	1^{st} M1 for an attempt to use 2400 and 600 in $a + (n-1)d$ formula. Must use both		
		values i.e. need $a + pd = 2400$ and $a + qd = 600$ where $p = 8$ or 9 and $q = 38$ or 39 (any combination)		
		2^{nd} M1 for an attempt to solve <u>their</u> 2 linear equations in a and d as far as $d = \dots$		
		A1 for $d = \pm 60$. Condone correct equations leading to $d = 60$ or $a + 8d = 2400$ and $a + 38d = 600$ leading to $d = -60$. They should get penalised in (b) and (c).		
		NB This is a "one off" ruling for A1. Usually an A mark must follow from their		
		work. ALT 1^{st} M1 for $(30d) = \pm (2400 - 600)$		
		$2^{\text{nd}} \text{ M1 for } (d =) \pm \frac{(2400 - 600)}{30}$		
		A1 for $d = +60$		
		$a + 9d = 600$, $a + 39d = 2400$ only scores M0 BUT if they solve to find $d = \pm 60$ then		
	(b)	use ALT scheme above. M1 for use of <u>their</u> d in a correct linear equation to find a leading to $a =$		
	(2)	A1 their a must be compatible with their d so $d = 60$ must have $a = 600$ and $d = -60$, $a = 2940$		
		So for example they can have $2400 = a + 9(60)$ leading to $a =$ for M1 but it scores A0		
	(0)	Any approach using a list scores M1A1 for a correct a but M0A0 otherwise		
	(c)	M1 for use of a correct S_n formula with $n = 40$ and at least one of a , d or l correct or correct ft.		
		1^{st} A1ft for use of a correct S_{40} formula and both a , d or a , l correct or correct follow		
		through		
		ALT Total = $\frac{1}{2}n\{a+l\} = \frac{1}{2} \times 40 \times (2940 + 600)$ (ft value of a) M1 A1ft		
		2 nd A1 for 70800 only		

Question Number	Scheme	Marks
Q6	$b^2 - 4ac$ attempted, in terms of p . $(3p)^2 - 4p = 0$ o.e. Attempt to solve for p e.g. $p(9p-4) = 0$ Must potentially lead to $p = k$, $k \ne 0$ $p = \frac{4}{9}$ (Ignore $p = 0$, if seen)	M1 A1 M1 A1cso [4]
	Condone x's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only 1^{st} A1 for any correct equation: $(3p)^2 - 4 \times 1 \times p = 0$ or better	
	$2^{\rm nd}$ M1 for an attempt to factorize or solve their quadratic expression in p . Method must be sufficient to lead to their $p = \frac{4}{9}$. Accept factors or use of quadratic formula or $(p \pm \frac{2}{9})^2 = k^2$ (o.e. eg) $(3p \pm \frac{2}{3})^2 = k^2$ or	
	equivalent work on their eqn. $9p^2 = 4p \Rightarrow \frac{9p^2}{R} = 4$ which would lead to $9p = 4$ is OK for this 2^{nd} M1 ALT Comparing coefficients	
	M1 for $(x + \alpha)^2 = x^2 + \alpha^2 + 2\alpha x$ and A1 for a correct equation eg $3p = 2\sqrt{p}$ M1 for forming solving leading to $\sqrt{p} = \frac{2}{3}$ or better	
	Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.	

Question Number	Scheme	Mark	(S
Q7 (a) (b) (c)	$(a_3 =)2(2k-7) - 7 \text{ or } 4k-14-7, = 4k-21$ (*)	B1 M1, A1d M1 M1 M1 A1	(1) eso (2) (4) [7]
(b)	M1 must see $2(\text{their } a_2) - 7$ or $2(2k-7) - 7$ or $4k-14-7$. Their a_2 must be a function of k . A1 cso must see the $2(2k-7) - 7$ or $4k-14-7$ expression and the $4k-21$ with no incorrect working 1^{st} M1 for an attempt to find a_4 using the given rule. Can be awarded for $8k-49$ seen. Use of formulae for the sum of an arithmetic series scores M0M0A0 for the next 3 marks. 2^{nd} M1 for attempting the sum of the 1^{st} 4 terms. Must have "+" not just, or clear attempt to sum. Follow through their a_2 and a_4 provided they are linear functions of k . Must lead to linear expression in k . Condone use of their linear $a_3 \neq 4k-21$ here too. 3^{rd} M1 for forming a linear equation in k using their sum and the 43 and attempt to solve for k as far as $pk = q$ A1 for $k = 8$ only so $k = \frac{120}{15}$ is A0 Answer Only (e.g. trial improvement) Accept $k = 8$ only if $8 + 9 + 11 + 15 = 43$ is seen as well Sum $a_2 + a_3 + a_4 + a_5$ or $a_2 + a_3 + a_4$ Allow: M1 if $8k - 49$ is seen, M0 for the sum (since they are not adding the 1^{st} 4 terms) then M1 if they use their sum along with the 43 to form a linear equation and attempt to solve but A0		

Question Number	Scheme	Marks
Q8 (a)	AB: $m = \frac{2-7}{8-6}$, $\left(=-\frac{5}{2}\right)$	B1
	Using $m_1 m_2 = -1$: $m_2 = \frac{2}{5}$	M1
	$y-7=\frac{2}{5}(x-6)$, $2x-5y+23=0$ (o.e. with integer coefficients)	M1, A1 (4)
(b)	Using $x = 0$ in the answer to (a), $y = \frac{23}{5}$ or 4.6	M1, A1ft (2)
(c)	Area of triangle = $\frac{1}{2} \times 8 \times \frac{23}{5} = \frac{92}{5}$ (o.e) e.g. $\left(18\frac{2}{5}, 18.4, \frac{184}{10}\right)$	M1 A1 (2)
(b)	B1 for an expression for the gradient of AB . Does not need the $= -2.5$ 1^{st} M1 for use of the perpendicular gradient rule. Follow through their m 2^{nd} M1 for the use of $(6, 7)$ and their changed gradient to form an equation for l . Can be awarded for $\frac{y-7}{x-6} = \frac{2}{5}$ o.e. Alternative is to use $(6, 7)$ in $y = mx + c$ to find a value for c . Score when $c =$ is reached. A1 for a correct equation in the required form and must have "= 0" and integer coefficients M1 for using $x = 0$ in their answer to part (a) e.g. $-5y + 23 = 0$ A1ft for $y = \frac{23}{5}$ provided that $x = 0$ clearly seen or $C(0, 4.6)$. Follow through their equation in (a) If $x = 0$, $y = 4.6$ are clearly seen but C is given as $(4.6,0)$ apply ISW and award the mark. This A mark requires a simplified fraction or an exact decimal Accept their 4.6 marked on diagram next to C for M1A1ft M1 for $\frac{1}{2} \times 8 \times y_C$ so can follow through their y coordinate of C . A1 for 18.4 (o.e.) but their y coordinate of C must be positive Use of 2 triangles or trapezium and triangle Award M1 when an expression for area of OCB only is seen Determinant approach Award M1 when an expression containing $\frac{1}{2} \times 8 \times y_C$ is seen	

Ques	tion ber	Scheme	Mark	s
Q9	(a)	$\left[(3 - 4\sqrt{x})^2 = \right] 9 - 12\sqrt{x} - 12\sqrt{x} + \left(-4\right)^2 x$	M1	
	(b)	$9x^{-\frac{1}{2}} + 16x^{\frac{1}{2}} - 24$ $f'(x) = -\frac{9}{2}x^{-\frac{3}{2}}, +\frac{16}{2}x^{-\frac{1}{2}}$	A1, A1	
	(c)	$f'(9) = -\frac{9}{2} \times \frac{1}{27} + \frac{16}{2} \times \frac{1}{3} = -\frac{1}{6} + \frac{16}{6} = \frac{5}{2}$	M1 A1	(3) (2) [8]
	(a)	M1 for an attempt to expand $(3-4\sqrt{x})^2$ with at least 3 terms correct- as printed or better Or $9-k\sqrt{x}+16x$ ($k \neq 0$). See also the MR rule below 1st A1 for their coefficient of $\sqrt{x}=16$. Condone writing $(\pm)9x^{(\pm)\frac{1}{2}}$ instead of $9x^{-\frac{1}{2}}$ 2nd A1 for $B=-24$ or their constant term $=-24$		
	(b)	M1 for an attempt to differentiate an x term $x^n \to x^{n-1}$ 1^{st} A1 for $-\frac{9}{2}x^{-\frac{3}{2}}$ and their constant B differentiated to zero. NB $-\frac{1}{2} \times 9x^{-\frac{3}{2}}$ is A0 2^{nd} A1ft follow through their $Ax^{\frac{1}{2}}$ but can be scored without a value for A , i.e. for $\frac{A}{2}x^{-\frac{1}{2}}$		
	(c)	M1 for some correct substitution of $x = 9$ in their expression for $f'(x)$ including an attempt at $(9)^{\pm \frac{k}{2}}$ (k odd) somewhere that leads to some appropriate multiples of $\frac{1}{3}$ or 3 A1 accept $\frac{15}{6}$ or any exact equivalent of 2.5 e.g. $\frac{45}{18}$, $\frac{135}{54}$ or even $\frac{67.5}{27}$ Misread (MR) Only allow MR of the form $\frac{(3-k\sqrt{x})^2}{\sqrt{x}}$ N.B. Leads to answer in (c) of $\frac{k^2-1}{6}$		
		Score as M1A0A0, M1A1A1ft, M1A1ft		

Ques Num		Scheme	Mark	(S
Q10	(a) (b)	$x(x^{2}-6x+9)$ $= x(x-3)(x-3)$ Shape $\frac{\text{Through origin (not touching)}}{\text{Touching } x\text{-axis only once}}$ $\text{Touching at (3, 0), or 3 on } x\text{-axis}$ $\text{[Must be on graph not in a table]}$	B1 M1 A1 B1 B1 B1 B1ft	(3)
	(c)	Moved horizontally (either way) (2, 0) and (5, 0), or 2 and 5 on x-axis	M1 A1 (2)	[9]
	(a)	B1 for correctly taking out a factor of x M1 for an attempt to factorize their 3TQ e.g. $(x+p)(x+q)$ where $ pq =9$.		
	S.C.	So $(x-3)(x+3)$ will score M1 but A0 A1 for a fully correct factorized expression - accept $x(x-3)^2$ If they "solve" use ISW If the only correct linear factor is $(x-3)$, perhaps from factor theorem, award B0M1A0 Do not award marks for factorising in part (b)		
	(b)	For the graphs "Sharp points" will lose the 1 st B1 in (b) but otherwise be generous on shape Condone (0, 3) in (b) and (0, 2), (0,5) in (c) if the points are marked in the correct places. 2 nd B1 for a curve that starts or terminates at (0, 0) score B0		
		4 th B1ft for a curve that touches (not crossing or terminating) at $(a, 0)$ where their $y = x(x-a)^2$		
	(c)	M1 for their graph moved horizontally (only) or a fully correct graph Condone a partial stretch if ignoring their values looks like a simple translation A1 for their graph translated 2 to the right and crossing or touching the axis at 2 and 5 only Allow a fully correct graph (as shown above) to score M1A1 whatever they have in (b)		

Quest		Scheme	Mar	ks
Num	ber	who he had a second a	ivial	
Q11	(a)	x = 2: $y = 8 - 8 - 2 + 9 = 7$ (*)	B1	(1)
	(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x - 1$	M1 A1	
		di	A1ft	
		$x = 2$: $\frac{dy}{dx} = 12 - 8 - 1 (= 3)$ y - 7 = 3(x - 2), $y = 3x + 1$		(5)
	(c)		M1, <u>A1</u>	(5)
	(0)	$m = -\frac{1}{3} $ (for $-\frac{1}{m}$ with their m)	B1ft	
		$3x^2 - 4x - 1 = -\frac{1}{3}$, $9x^2 - 12x - 2 = 0$ or $x^2 - \frac{4}{3}x - \frac{2}{9} = 0$ (o.e.)	M1, A1	
		$\left(x = \frac{12 + \sqrt{144 + 72}}{18}\right) \left(\sqrt{216} = \sqrt{36}\sqrt{6} = 6\sqrt{6}\right) \text{ or } (3x - 2)^2 = 6 \to 3x = 2 \pm \sqrt{6}$	M1	
		$x = \frac{1}{2} \left(2 + \sqrt{6} \right) \tag{*}$	A1cso	(5)
				[11]
	(0)			
	(a)	B1 there must be a clear attempt to substitute $x = 2$ leading to 7 e.g. $2^3 - 2 \times 2^2 - 2 + 9 = 7$		
	(b)	1 st M1 for an attempt to differentiate with at least one of the given terms fully		
		correct. 1 st A1 for a fully correct expression		
		2^{nd} A1ft for sub. $x=2$ in their $\frac{dy}{dx} \neq y$ accept for a correct expression e.g.		
		$3\times(2)^2-4\times2-1$		
		2 nd M1 for use of their "3" (provided it comes from their $\frac{dy}{dx}$ ($\neq y$) and $x=2$) to find		
		equation of tangent. Alternative is to use $(2, 7)$ in $y = mx + c$ to <u>find a value</u> for c .		
		Award when $c = \dots$ is seen.		
		No attempted use of $\frac{dy}{dx}$ in (b) scores 0/5		
	(c)	1 st M1 for forming an equation from their $\frac{dy}{dx} (\neq y)$ and their $-\frac{1}{m}$ (must be		
		changed from <i>m</i>)		
		1 st A1 for a correct 3TQ all terms on LHS (condone missing =0) 2 nd M1 for proceeding to $x =$ or $3x =$ by formula or completing the square for		
		a 3TQ. Not factorising. Condone <u>+</u>		
		2^{nd} A1 for proceeding to given answer with no incorrect working seen. Can still have \pm .		
	ALT	Verify (for M1A1M1A1)		
		1 st M1 for attempting to square need \geq 3 correct values in $\frac{4+6+4\sqrt{6}}{9}$, 1 st A1 for $\frac{10+4\sqrt{6}}{9}$		
		2^{nd} M1 Dependent on 1^{st} M1 in this case for substituting in all terms of their $\frac{dy}{dx}$		
		2^{nd} A1cso for cso with a full comment e.g. "the x co-ord of Q is"		

June 2009 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme	ı	Marks
Q1	$\int \left(2x+3x^{\frac{1}{2}}\right) dx = \frac{2x^2}{2} + \frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ $\int_{1}^{4} \left(2x+3x^{\frac{1}{2}}\right) dx = \left[x^2+2x^{\frac{3}{2}}\right]_{1}^{4} = (16+2\times8) - (1+2)$	M1 .	A1A1
	$\int_{1}^{4} \left(2x + 3x^{\frac{1}{2}}\right) dx = \left[x^{2} + 2x^{\frac{3}{2}}\right]_{1}^{4} = (16 + 2 \times 8) - (1 + 2)$	M1	
	= 29 (29 + C scores A0)	A1	(5) [5]
	1 st M1 for attempt to integrate $x \to kx^2$ or $x^{\frac{1}{2}} \to kx^{\frac{3}{2}}$.		
	$1^{\text{st}} A1$ for $\frac{2x^2}{2}$ or a simplified version.		
	$2^{\text{nd}} \text{ A1} \text{for } \frac{3x^{\frac{3}{2}}}{\binom{3}{2}} \text{ or } \frac{3x\sqrt{x}}{\binom{3}{2}} \text{or a simplified version.}$		
	Ignore + C , if seen, but two correct terms and an <u>extra non-constant</u> term scores M1A1.	A0.	
	2 nd M1 for correct use of correct limits ('top' – 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation).	y	
	Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear.		
	No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).		

Question Number	Scheme	Marks
	$(7 \times yr)$ or $(21 \times yr^2)$ The 7 or 21 can be in 'unsimplified' form	M1
(4)	$(7 \times \times x)$ or $(21 \times \times x^2)$ The 7 or 21 can be in 'unsimplified' form. $(2+kx)^7 = 2^7 + 2^6 \times 7 \times kx + 2^5 \times {7 \choose 2} k^2 x^2$	
	$= 128; +448kx, +672k^2x^2 [\text{or } 672(kx)^2]$ (If $672kx^2$ follows $672(kx)^2$, isw and allow A1)	B1; A1, A1 (4)
(b)	$6 \times 448k = 672k^2$	M1
	k = 4 (Ignore $k = 0$, if seen)	A1 (2) [6]
(a)	The terms can be 'listed' rather than added. Ignore any extra terms. M1 for either the x term or the x^2 term. Requires correct binomial coefficient in any factorized with the correct power of x , but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as $\binom{7}{1}$, $\binom{7}{2}$, $\binom{7}{2}$, $\binom{7}{2}$, $\binom{7}{2}$. However, $448 + kx$ or similar is M0. B1, A1, A1 for the simplified versions seen above. Alternative: Note that a factor 2^7 can be taken out first: $2^7 \left(1 + \frac{kx}{2}\right)^7$, but the mark scheme still apply Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128 + 448kx + 672k^2x^2$ M1 B1 A1 A1 $= 4 + 14kx + 21k^2x^2$ isw (Full marks are still available in part (b)). M1 for equating their coefficient of x to 6 times that of x to get an equation in k . Allow this M mark even if the equation is trivial, providing their coefficients from pa have been used, e.g. $6 \times 448k = 672k$, but beware $k = 4$ following from this, which is $\frac{An}{A}$ equation in $\frac{A}{A}$ alone is required for this M mark, so e.g. $6 \times 448kx = 672k^2x^2 \implies k = 4$ or similar is M0 A0 (equation in coefficients only never seen), but e.g. $6 \times 448kx = 672k^2x^2 \implies 6 \times 448k = 672k^2 \implies k = 4$ will get M1 A1 (as coefficients rather than terms have now been considered) The mistake $2\left(1 + \frac{kx}{2}\right)^7$ would give a maximum of 3 marks: M1B0A0A0, M1A1	Form g rt (a) s A0. is

Question Number	Scheme	Mari	ks
Q3 (a)	f(k) = -8	B1	(1)
(b)	$f(2) = 4 \Rightarrow 4 = (6-2)(2-k)-8$	M1	
	So $k = -1$	A1	(2)
(c)	$f(x) = 3x^2 - (2+3k)x + (2k-8) = 3x^2 + x - 10$	M1	
	=(3x-5)(x+2)	M1A1	(3)
			[6]
(b)	M1 for substituting $x = 2$ (not $x = -2$) and equating to 4 to form an equation in k . If the expression is expanded in this part, condone 'slips' for this M mark. Treat the omission of the -8 here as a 'slip' and allow the M mark. Beware: Substituting $x = -2$ and equating to 0 (M0 A0) also gives $k = -1$. Alternative; M1 for dividing by $(x - 2)$, to get $3x +$ (function of k), with remainder as a function of k , and equating the remainder to 4. [Should be $3x + (4 - 3k)$, remainder $-4k$]. No working: $k = -1$ with no working scores M0 A0.		

Quest Numb		Scheme	Mark	(S	
Q4		$x = 2$ gives 2.236 (allow AWRT) Accept $\sqrt{5}$	B1		
	/l=\	x = 2.5 gives 2.580 (allow AWRT) Accept 2.58	B1	(2)	
	(0)	$\left(\frac{1}{2} \times \frac{1}{2}\right), \left[(1.414 + 3) + 2(1.554 + 1.732 + 1.957 + 2.236 + 2.580) \right]$	B1,[M1	A1ft]	
		= 6.133 (AWRT 6.13, even following minor slips)	A1	(4)	
	(c)	Overestimate	B1		
		'Since the trapezia lie <u>above the curve</u> ', or an equivalent explanation, or sketch of (one or more) trapezia above the curve on a diagram (or on the given diagram, in which case there should be reference to this). (Note that there must be some reference to a trapezium or trapezia in the explanation or diagram).	dB1	(2) [8]	
	(b)	B1 for $\frac{1}{2} \times \frac{1}{2}$ or equivalent.			
		For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mistake is to omit one of the values from the second bracket, this can be considered as a slip and the M mark can be allowed.			
		Bracketing mistake: i.e. $\left(\frac{1}{2} \times \frac{1}{2}\right) (1.414 + 3) + 2(1.554 + 1.732 + 1.957 + 2.236 + 2.580)$			
		scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).			
		Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.414+1.554)+\frac{1}{4}(1.554+1.732)+\dots+\frac{1}{4}(2.580+3)\right]$			
		1 st A1ft for correct expression, ft their 2.236 and their 2.580			
	(c)	1 st B1 for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. 2 nd B1 is dependent upon the 1 st B1 (overestimate).			

Ques Num		Scheme	Marks			
Q5		$324r^3 = 96$ or $r^3 = \frac{96}{324}$ or $r^3 = \frac{8}{27}$	M1			
	(b)	$324r^{3} = 96$ or $r^{3} = \frac{96}{324}$ or $r^{3} = \frac{8}{27}$ $r = \frac{2}{3}$ $a\left(\frac{2}{3}\right)^{2} = 324 \text{ or } a\left(\frac{2}{3}\right)^{5} = 96 a = \dots,$ 729	A1cso (2)			
			M1, A1 (2)			
	(c)	$S_{15} = \frac{729\left(1 - \left[\frac{2}{3}\right]^{15}\right)}{1 - \frac{2}{3}}, = 2182.00$ (AWRT 2180)	M1A1ft, (3)			
	(d)	$S_{\infty} = \frac{729}{1 - \frac{2}{3}}, \qquad = 2187$	M1, A1 (2)			
	(a)	M1 for forming an equation for r^3 based on 96 and 324 (e.g. $96r^3 = 324$ scores M1. The equation must involve multiplication/division rather than addition/subtraction				
		A1 Do not penalise solutions with working in decimals, providing these are correctly rounded or truncated to at least 2dp and the final answer 2/3 is seen.				
	Alternative: (verification)					
		M1 Using $r^3 = \frac{8}{27}$ and multiplying 324 by this (or multiplying by $r = \frac{2}{3}$ three time	s).			
		A1 Obtaining 96 (cso). (A conclusion is not required).				
		$324 \times \left(\frac{2}{3}\right)^3 = 96$ (no real evidence of calculation) is not quite enough and scores M1.	A0.			
	(b)	M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by the				
		from 324 (or 5 times from 96). Exceptionally, allow M1 also for using $ar^3 = 324$ or $ar^6 = 96$ instead of $ar^2 = 324$ or for dividing by r three times from 324 (or 6 times from 96) but no other exceptions $ar^3 = 324$ or $ar^4 =$				
	(c)	M1 for use of sum to 15 terms formula with values of <i>a</i> and <i>r</i> . If the wrong power is e.g. 14, the M mark is scored only if the correct sum formula is stated.	used,			
		1 st A1ft for a correct expression or correct ft their a with $r = \frac{2}{3}$.				
		2 nd A1 for awrt 2180, even following 'minor inaccuracies'.				
		Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c).				
		Alternative:	2			
		M1 for adding 15 terms and 1^{st} A1ft for adding the 15 terms that ft from their a and	$r=\frac{2}{3}$.			
	(d)	M1 for use of correct sum to infinity formula with their <i>a</i> . For this mark, if a value of different from the given value is being used, M1 can still be allowed providing				

Question Number	Scheme	Ma	arks
Q6 (a)	$(x-3)^2 - 9 + (y+2)^2 - 4 = 12$ Centre is $(3, -2)$	M1 A1	, A1
(b)	$(x-3)^2 + (y+2)^2 = 12 + "9" + "4"$ $r = \sqrt{12 + "9" + "4"} = 5 \text{ (or } \sqrt{25} \text{)}$	M1 A1 M1 A1	(5)
(c)	[ALT: find two grads, e.g. PQ and P to centre: M1, equal \therefore diameter: A1] [ALT: show that point $S(-1,-5)$ or $(7, 1)$ lies on circle: M1 because $\angle PSQ = 90^\circ$, semicircle \therefore diameter: A1] R must lie on the circle (angle in a semicircle theorem) often implied by a diagram with R on the circle or by subsequent working) $x = 0 \Rightarrow y^2 + 4y - 12 = 0$ $(y - 2)(y + 6) = 0 y =$ (M is dependent on previous M) $y = -6$ or 2 (Ignore $y = -6$ if seen, and 'coordinates' are not required))	B1 M1 dM1 A1	(4) [11]
(a)	1st M1 for attempt to complete square. Allow $(x\pm 3)^2 \pm k$, or $(y\pm 2)^2 \pm k$, $k \ne 0$. 1st A1 x-coordinate 3, 2nd A1 y-coordinate -2 2nd M1 for a full method leading to $r=\ldots$, with their 9 and their 4, 3nd A1 5 or $\sqrt{2}$. The 1st M can be implied by $(\pm 3, \pm 2)$ but a full method must be seen for the 2nd M. Where the 'diameter' in part (b) has clearly been used to answer part (a), no marks in (a) but in this case the M1 (not the A1) for part (b) can be given for work seen in (a). Alternative 1st M1 for comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down centre $(-g, -f)$ directly. Condone sign errors for this M mark. 2nd M1 for using $r = \sqrt{g^2 + f^2 - c}$. Condone sign errors for this M mark.		
(c)	1 st M1 for setting $x = 0$ and getting a 3TQ in y by using eqn. of circle. 2 nd M1 (dep.) for attempt to solve a 3TQ leading to <u>at least one</u> solution for y . Alternative 1: (Requires the B mark as in the main scheme) 1 st M for using (3, 4, 5) triangle with vertices $(3, -2), (0, -2), (0, y)$ to get a linear or quadratic equation in y (e.g. $3^2 + (y + 2)^2 = 25$). 2 nd M (dep.) as in main scheme, but may be scored by simply solving a linear equation Alternative 2: (Not requiring realisation that R is on the circle) B1 for attempt at $m_{p_R} \times m_{Q_R} = -1$, (NOT m_{p_Q}) or for attempt at Pythag. in triangle R 1 st M1 for setting R = 0, i.e. R (0, R), and proceeding to get a 3TQ in R . Then main scheme Alternative 2 by 'verification': B1 for attempt at R	PQR. e.	

Question Number	Scheme	Marks				
Q7 (i)	$\tan \theta = -1 \Rightarrow \qquad \theta = -45, 135$	B1, B1ft				
	$\sin \theta = \frac{2}{5} \Rightarrow \theta = 23.6, 156.4$ (AWRT: 24, 156)	B1, B1ft (4)				
(ii)	$4\sin x = \frac{3\sin x}{\cos x}$	M1				
	$4\sin x \cos x = 3\sin x \implies \sin x (4\cos x - 3) = 0$	M1				
	Other possibilities (after squaring): $\sin^2 x (16\sin^2 x - 7) = 0$, $(16\cos^2 x - 9)(\cos^2 x - 1) = 0$					
	x = 0, 180 seen	B1, B1				
	x = 41.4, 318.6 (AWRT: 41, 319)	B1, B1ft (6)				
		[10]				
(i)	1 st B1 for -45 seen $(\alpha, \text{ where } \alpha < 90)$					
	2^{nd} B1 for 135 seen, or ft (180 + α) if α is negative, or (α – 180) if α is positive. If $\tan \theta = k$ is obtained from wrong working, 2^{nd} B1ft is still available.					
	3^{rd} B1 for awrt 24 (β , where $ \beta < 90$)					
	4 th B1 for awrt 156, or ft (180 – β) if β is positive, or – (180 + β) if β is negative. If $\sin \theta = k$ is obtained from wrong working, 4 th B1ft is still available.					
(ii)	1^{st} M1 for use of $\tan x = \frac{\sin x}{2}$. Condone $\frac{3\sin x}{2}$.					
	$\cos x$ $3\cos x$ 2^{nd} M1 for correct work leading to 2 factors (may be implied). 1^{st} B1 for 0, 2^{nd} B1 for 180.					
	3^{rd} B1 for awrt 41 $(\gamma, \text{ where } \gamma < 180)$					
	4^{th} B1 for awrt 319, or ft $(360 - \gamma)$.					
	If $\cos \theta = k$ is obtained from <u>wrong working</u> , 4^{th} B1ft is still available. N.B. Losing $\sin x = 0$ usually gives a maximum of 3 marks M1M0B0B0B1B1					
	Alternative: (squaring both sides)					
	1 st M1 for squaring both sides and using a 'quadratic' identity. e.g. $16 \sin^2 \theta = 9(\sec^2 \theta - 1)$					
	2 nd M1 for reaching a factorised form.					
	e.g. $(16\cos^2\theta - 9)(\cos^2\theta - 1) = 0$	1. 1 .				
	Then marks are equivalent to the main scheme. Extra solutions, if not rejected, are penathe main scheme.	alised as in				
	For both parts of the question:					
	Extra solutions outside required range: Ignore					
	Extra solutions inside required range: For each <u>pair</u> of B marks, the 2 nd B mark is lost if there are two correct values and one or more extra solution(s), e.g. $\tan \theta = -1 \Rightarrow \theta = 45, -45, 135$ is B1 B0					
	Answers in radians: Loses a maximum of 2 B marks in the whole question (to be deducted at the first and second occurrence).					

Question Number	Scheme	Mar	·ks
Q8 (a)	$\log_2 y = -3 \Rightarrow y = 2^{-3}$ $y = \frac{1}{8} \text{or} 0.125$	M1 A1	(2)
(b)	$32 = 2^5$ or $16 = 2^4$ or $512 = 2^9$	M1	()
	[or $\log_2 32 = 5\log_2 2$ or $\log_2 16 = 4\log_2 2$ or $\log_2 512 = 9\log_2 2$]		
	[or $\log_2 32 = \frac{\log_{10} 32}{\log_{10} 2}$ or $\log_2 16 = \frac{\log_{10} 16}{\log_{10} 2}$ or $\log_2 512 = \frac{\log_{10} 512}{\log_{10} 2}$]		
	$\log_2 32 + \log_2 16 = 9$	A1	
	$(\log x)^2 = \dots$ or $(\log x)(\log x) = \dots$ (May not be seen explicitly, so M1 may be implied by later work, and the base may be 10 rather than 2)	M1	
	$\log_2 x = 3 \Rightarrow x = 2^3 = 8$	A1	
	$\log_2 x = -3 \Rightarrow x = 2^{-3} = \frac{1}{8}$	A1ft	(5) [7]
(a) (b)	M1 for getting out of logs correctly. If done by change of base, $\log_{10} y = -0.903$ is insufficient for the M1, but $y = 10^{-0.903}$ scores M1. A1 for the exact answer, e.g. $\log_{10} y = -0.903 \Rightarrow y = 0.12502$ scores M1 (implied) A0. Correct answer with no working scores both marks. Allow both marks for implicit statements such as $\log_2 0.125 = -3$. 1st M1 for expressing 32 or 16 or 512 as a power of 2, or for a change of base enabling evaluation of $\log_2 32$, $\log_2 16$ or $\log_2 512$ by calculator. (Can be implied by 5, 4 or 9 respectively). 1st A1 for 9 (exact). 2nd M1 for getting $(\log_2 x)^2 = \text{constant}$. The constant can be a log or a sum of logs. If written as $\log_2 x^2$ instead of $(\log_2 x)^2$, allow the M mark only if subsequent work implies correct interpretation. 2nd A1 for 8 (exact). Change of base methods leading to a non-exact answer score A0. 3rd A1ft for an answer of $\frac{1}{\text{their 8}}$. An ft answer may be non-exact. Possible mistakes: $\log_2(2^9) = \log_2(x^2) \Rightarrow x^2 = 2^9 \Rightarrow x =$ scores M1A1(implied by 9)M0A0A0 $\log_2 512 = \log_2 x \times \log_2 x \Rightarrow x^2 = 512 \Rightarrow x =$ scores M0A0(9 never seen)M1A0A0 $\log_2 512 = \log_2 x \times \log_2 x \Rightarrow x^2 = 512 \Rightarrow x =$ scores M0A0(9 never seen)M1A0A0 $\log_2 48 = (\log_2 x)^2 \Rightarrow (\log_2 x)^2 = 5.585 \Rightarrow x = 5.145, x = 0.194$ scores M0A0M1A0A1ft No working (or 'trial and improvement'):		

Questic		Scheme	Marks			
	(a)	(Arc length =) $r\theta = r \times 1 = r$. Can be awarded by implication from later work, e.g. $3rh$ or $(2rh + rh)$ in the S formula. (Requires use of $\theta = 1$).	B1			
		(Sector area =) $\frac{1}{2}r^2\theta = \frac{1}{2}r^2 \times 1 = \frac{r^2}{2}$. Can be awarded by implication from later	B1			
		work, e.g. the correct volume formula. (Requires use of $\theta = 1$).				
		Surface area = 2 sectors + 2 rectangles + curved face $(= r^2 + 3rh)$ (See notes below for what is allowed here)				
		Volume = $300 = \frac{1}{2}r^2h$				
((b)	Sub for h: $S = r^2 + 3 \times \frac{600}{r} = r^2 + \frac{1800}{r}$ (*)	A1cso (5)			
	ω)	$\frac{dS}{dr} = 2r - \frac{1800}{r^2}$ or $2r - 1800r^{-2}$ or $2r + -1800r^{-2}$	M1A1			
		$\frac{dS}{dr} = 0 \implies r^3 =, r = \sqrt[3]{900}$, or AWRT 9.7 (NOT -9.7 or ±9.7)	M1, A1 (4)			
		$\frac{d^2S}{dr^2}$ = and consider sign, $\frac{d^2S}{dr^2}$ = 2 + $\frac{3600}{r^3}$ > 0 so point is a minimum	M1, A1ft (2)			
((d)	$S_{\min} = (9.65)^2 + \frac{1800}{9.65}$				
		(Using their value of r , however found, in the given S formula) = 279.65 (AWRT: 280) (Dependent on full marks in part (b))	M1 A1 (2) [13]			
((a)	M1 for attempting a formula (with terms added) for surface area. May be incomplete or wrong and may have extra term(s), but must have an r^2 (or $r^2\theta$) term and an rh (or $rh\theta$) term.				
(1	(b)	In parts (b), (c) and (d), ignore labelling of parts 1^{st} M1 for attempt at differentiation (one term is sufficient) $r^n \rightarrow kr^{n-1}$ 2^{nd} M1 for setting their derivative (a 'changed function') = 0 and solving as far as r^3 = (depending upon their 'changed function', this could be $r =$ or $r^2 =$, etc., the algebra must deal with a negative power of r and should be sound apart from possible sign errors, so that $r^n =$ is consistent with their derivative).	but			
((c)	 M1 for attempting second derivative (one term is sufficient) rⁿ → krⁿ⁻¹, and considering its sign. Substitution of a value of r is not required. (Equating it to zero is M0). A1ft for a correct second derivative (or correct ft from their first derivative) and a valid reason (e.g. > 0), and conclusion. The actual value of the second derivative, if found, can be ignored. To score this mark as ft, their second derivative must indicate a minimum. Alternative: M1: Find value of dS/dr on each side of their value of r and consider sign. 				
		Altr: Indicate sign change of negative to positive for $\frac{dS}{dr}$, and conclude minimum.				
		Alternative: M1: Find value of S on each side of their value of r and compare with their 279.65. A1ft: Indicate that both values are more than 279.65, and conclude minimum.				

June 2009 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme		ľ	Vark	S
Q1 (a)	Iterative formula: $x_{n+1} = \frac{2}{(x_n)^2} + 2$, $x_0 = 2.5$				
	$x_{1} = \frac{2}{(2.5)^{2}} + 2$ $x_{1} = 2.32$ $x_{2} = 2.371581451$ $x_{3} = 2.355593575$ $x_{4} = 2.360436923$	An attempt to substitute $x_0 = 2.5$ into the iterative formula. Can be implied by $x_1 = 2.32$ or 2.320 Both $x_1 = 2.32(0)$ and $x_2 = \text{awrt } 2.372$ Both $x_3 = \text{awrt } 2.356$ and $x_4 = \text{awrt } 2.360$ or 2.36	M1 A1 A1	cso	(3)
(b)	Let $f(x) = -x^3 + 2x^2 + 2 = 0$				
	f(2.3585) = 0.00583577 f(2.3595) = -0.00142286 Sign change (and $f(x)$ is continuous) therefore a root	Choose suitable interval for <i>x</i> , e.g. [2.3585, 2.3595] or tighter any one value awrt 1 sf or truncated 1 sf	M1 dM1		
	α is such that $\alpha \in (2.3585, 2.3595) \Rightarrow \alpha = 2.359$ (3 dp)	both values correct, sign change and conclusion At a minimum, both values must be correct to 1sf or truncated 1sf, candidate states "change of sign, hence root".	A1		(3)
					[6]

Question Number	Scheme		Mark	(S
Q2 (a)	$\cos^2\theta + \sin^2\theta = 1 (\div \cos^2\theta)$			
	$\frac{\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$	Dividing $\cos^2 \theta + \sin^2 \theta = 1$ by $\cos^2 \theta$ to give <u>underlined</u> equation.	M1	
	$1 + \tan^2 \theta = \sec^2 \theta$			
	$\tan^2 \theta = \sec^2 \theta - 1$ (as required) AG	Complete proof. No errors seen.	A1 cso	(2)
(b)	$2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2, (\text{eqn *}) 0 \le \theta < 360^\circ$			
	$2(\sec^2\theta - 1) + 4\sec\theta + \sec^2\theta = 2$	Substituting $\tan^2 \theta = \sec^2 \theta - 1$ into eqn * to get a quadratic in $\sec \theta$ only	M1	
	$2\sec^2\theta - 2 + 4\sec\theta + \sec^2\theta = 2$			
	$3\sec^2\theta + 4\sec\theta - 4 = 0$	Forming a three term "one sided" quadratic expression in $\sec \theta$.	M1	
	$(\sec\theta + 2)(3\sec\theta - 2) = 0$	Attempt to factorise or solve a quadratic.	M1	
	$\sec \theta = -2$ or $\sec \theta = \frac{2}{3}$			
	$\frac{1}{\cos \theta} = -2 \text{or} \frac{1}{\cos \theta} = \frac{2}{3}$			
	$\cos \theta = -\frac{1}{2}$; or $\cos \theta = \frac{3}{2}$	$\cos\theta = -\frac{1}{2}$	A1;	
	$\alpha = 120^{\circ}$ or $\alpha = \text{no solutions}$			
	$\theta_1 = \underline{120^\circ}$	<u>120°</u>	<u>A1</u>	
	$\theta_2 = 240^{\circ}$	$\underline{240^{\circ}}$ or $\theta_2 = 360^{\circ} - \theta_1$ when solving using $\cos \theta = \dots$	B1 √	
	$\theta = \left\{120^{\circ}, 240^{\circ}\right\}$	Note the final A1 mark has been changed to a B1 mark.		(6)
				[8]

Question Number	Scheme		Mark	s
Q3	$P = 80 e^{\frac{t}{5}}$			
(a)	$t = 0 \implies P = 80e^{\frac{0}{5}} = 80(1) = \underline{80}$	<u>80</u>	B1	(1)
(b)	$P = 1000 \Rightarrow 1000 = 80e^{\frac{t}{5}} \Rightarrow \frac{1000}{80} = e^{\frac{t}{5}}$	Substitutes $P = 1000$ and earranges equation to make $e^{\frac{t}{5}}$ the subject.	M1	
	$\therefore t = 5 \ln \left(\frac{1000}{80} \right)$			
		awrt 12.6 or 13 years fote $t = 12$ or $t = \text{awrt } 12.6 \Rightarrow t = 12$ rill score A0	A1	(2)
(c)	$\frac{\mathrm{d}P}{\mathrm{d}t} = 16\mathrm{e}^{\frac{t}{5}}$	$ke^{\frac{1}{5}t}$ and $k \neq 80$. $16e^{\frac{1}{5}t}$	M1 A1	(2)
(d)	$50 = 16e^{\frac{L}{5}}$			
	$\therefore t = 5 \ln \left(\frac{50}{16} \right) \qquad \{ = 5.69717 \}$	Using $50 = \frac{dP}{dt}$ and an attempt to solve to find the value of t or $\frac{t}{5}$.	M1	
	$P = 80e^{\frac{1}{5}(5\ln(\frac{50}{16}))}$ or $P = 80e^{\frac{1}{5}(5.69717)}$	Substitutes their value of <i>t</i> back into the equation for <i>P</i> .	dM1	
	$P = \frac{80(50)}{16} = \underline{250}$	<u>250</u> or awrt 250	A1	
				(3)
				[8]

Question Number	Scheme	Marks
	$y = x^{2} \cos 3x$ Apply product rule: $\begin{cases} u = x^{2} & v = \cos 3x \\ \frac{du}{dx} = 2x & \frac{dv}{dx} = -3\sin 3x \end{cases}$	
	Applies $vu' + uv'$ correctly for their u, u', v, v' AND gives an expression of the form $\frac{dy}{dx} = 2x\cos 3x - 3x^2 \sin 3x$ Any one term correct Both terms correct and no further simplification to terms in $\cos \alpha x^2$ or $\sin \beta x^3$.	M1 A1 A1 (3)
(b)	$y = \frac{\ln(x^2 + 1)}{x^2 + 1}$	(0)
	$u = \ln(x^2 + 1) \implies \frac{du}{dx} = \frac{2x}{x^2 + 1}$ $\ln(x^2 + 1) \implies \frac{\sin(x^2 + 1)}{x^2 + 1}$ $\ln(x^2 + 1) \implies \frac{2x}{x^2 + 1}$	M1 A1
	Apply quotient rule: $\begin{cases} u = \ln(x^2 + 1) & v = x^2 + 1 \\ \frac{du}{dx} = \frac{2x}{x^2 + 1} & \frac{dv}{dx} = 2x \end{cases}$	
	$\frac{dy}{dx} = \frac{\left(\frac{2x}{x^2+1}\right)(x^2+1) - 2x\ln(x^2+1)}{\left(x^2+1\right)^2}$ Applying $\frac{vu' - uv'}{v^2}$ Correct differentiation with correct bracketing but allow recovery.	M1 A1 (4)
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 2x\ln(x^2 + 1)}{\left(x^2 + 1\right)^2} \right\}$ {Ignore subsequent working.}	

Question Number	Scheme	Marks
(ii)		
	At P , $y = \sqrt{4(2) + 1} = \sqrt{9} = 3$ At P , $y = \sqrt{9}$ or	B1
	$\frac{dy}{dx} = \frac{1}{2} (4x+1)^{-\frac{1}{2}} (4)$ $2(4x+1)^{-\frac{1}{2}}$	M1* A1 aef
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{(4x+1)^{\frac{1}{2}}}$	Al del
	At P , $\frac{dy}{dx} = \frac{2}{(4(2)+1)^{\frac{1}{2}}}$ Substituting $x = 2$ into an equation involving $\frac{dy}{dx}$	I N //1
	Hence $m(\mathbf{T}) = \frac{2}{3}$	
	Either T : $y-3=\frac{2}{3}(x-2)$; or $y-y_1=m(x-2)$ or $y-y_1=m(x-2)$ or $y-y_1=m(x-2)$ or $y-y_1=m(x-2)$ or $y-y_2=m(x-2)$ or $y-y_2=m(x-$	d d ; dM1*;
	Either T : $3y-9=2(x-2)$;	
	T: $3y-9=2x-4$	
	T: $2x - 3y + 5 = 0$ Tangent must be stated in the form $ax + by + c = 0$, where a , b and c are integers.	l
	or T : $y = \frac{2}{3}x + \frac{5}{3}$	(6)
	$\mathbf{T}: 3y = 2x + 5$	
	T: $2x - 3y + 5 = 0$	
		[13]

Ques		Scheme	Mark	(S
Q5	(a)	Curve retains shape when $x > \frac{1}{2} \ln k$	B1	
		Curve reflects through the x-axis when $x < \frac{1}{2} \ln k$	B1	
		$O \qquad \left(\frac{1}{2}\ln k, 0\right) \qquad x \qquad \left(0, k-1\right) \text{ and } \left(\frac{1}{2}\ln k, 0\right) \text{ marked in the correct positions.}$	B1	(3)
	(b)	Correct shape of curve. The curve should be contained in quadrants 1, 2 and 3 (Ignore asymptote) $(1-k,0)$	B1	
		$(1-k,0) \text{ and } (0,\frac{1}{2}\ln k)$	B1	
		Either $f(x) > -k$ or $y > -k$ or		(2)
	(c)	Range of f: $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $\underline{(-k, \infty)}$ $\underline{(-k, \infty)}$ or $\underline{f > -k}$ or $\underline{Range > -k}$.	B1	(1)
	(d)	$y = e^{2x} - k \implies y + k = e^{2x}$ Attempt to make x (or swapped y) the subject	M1	(1)
		$\Rightarrow \ln(y+k) = 2x$ $\Rightarrow \frac{1}{2}\ln(y+k) = x$ (or swapped y) the subject Makes e^{2x} the subject and takes ln of both sides	M1	
		Hence $f^{-1}(x) = \frac{1}{2}\ln(x+k)$ or $\frac{\ln\sqrt{(x+k)}}{\ln x}$	A1 cao	(3)
	(e)	Either $\underline{x > -k}$ or $\underline{(-k, \infty)}$ or Domain: $\underline{x > -k}$ or $\underline{(-k, \infty)}$ or Domain $\underline{x > -k}$ or $\underline{(-k, \infty)}$ inequality" their part (c) RANGE answer	B1 √	(1)
				[10]

Ques Num		Scheme		Marks		S
Q6	(a)	$A = B \Rightarrow \cos(A + A) = \cos 2A = \underline{\cos A \cos A - \sin A \sin A}$	Applies $A = B$ to $\cos(A + B)$ to give the <u>underlined</u> equation or $\cos 2A = \frac{\cos^2 A - \sin^2 A}{2}$	M1		
		$\cos 2A = \cos^2 A - \sin^2 A$ and $\cos^2 A + \sin^2 A = 1$ gives				
		$\frac{\cos 2A}{\cos 2A} = 1 - \sin^2 A - \sin^2 A = \frac{1 - 2\sin^2 A}{\cos^2 A}$ (as required)	Complete proof, with a link between LHS and RHS. No errors seen.	A1	AG	(2)
	(b)	$C_1 = C_2 \implies 3\sin 2x = 4\sin^2 x - 2\cos 2x$	Eliminating <i>y</i> correctly.	M1		
		$3\sin 2x = 4\left(\frac{1-\cos 2x}{2}\right) - 2\cos 2x$	Using result in part (a) to substitute for $\sin^2 x$ as $\frac{\pm 1 \pm \cos 2x}{2}$ or $k \sin^2 x$ as $k\left(\frac{\pm 1 \pm \cos 2x}{2}\right)$ to produce an equation in only double angles.	M1		
		$3\sin 2x = 2(1-\cos 2x) - 2\cos 2x$				
		$3\sin 2x = 2 - 2\cos 2x - 2\cos 2x$				
		$3\sin 2x + 4\cos 2x = 2$	Rearranges to give correct result	A1	AG	(3)
	(c)	$3\sin 2x + 4\cos 2x = R\cos(2x - \alpha)$				
		$3\sin 2x + 4\cos 2x = R\cos 2x\cos \alpha + R\sin 2x\sin \alpha$				
		Equate $\sin 2x$: $3 = R \sin \alpha$ Equate $\cos 2x$: $4 = R \cos \alpha$				
		$R = \sqrt{3^2 + 4^2} \; ; = \sqrt{25} = 5$	R = 5	B1		
		$\tan \alpha = \frac{3}{4} \implies \alpha = 36.86989765^{\circ}$	$\tan \alpha = \pm \frac{3}{4}$ or $\tan \alpha = \pm \frac{4}{3}$ or $\sin \alpha = \pm \frac{3}{\text{their } R}$ or $\cos \alpha = \pm \frac{4}{\text{their } R}$ awrt 36.87	M1 A1		
		Hence, $3\sin 2x + 4\cos 2x = 5\cos(2x - 36.87)$				(3)

Question Number	Scheme		Mar	ks
(d)	$3\sin 2x + 4\cos 2x = 2$			
	$5\cos(2x - 36.87) = 2$			
	$\cos(2x-36.87)=\frac{2}{5}$	$\cos(2x \pm \text{their } \alpha) = \frac{2}{\text{their } R}$	M1	
	$(2x - 36.87) = 66.42182^{\circ}$	awrt 66	A1	
	$(2x - 36.87) = 360 - 66.42182^{\circ}$			
	Hence, $x = 51.64591^{\circ}$, 165.22409°	One of either awrt 51.6 or awrt 51.7 or awrt 165.2 or awrt 165.3	A1	
		Both awrt 51.6 AND awrt 165.2	A1	(4)
		If there are any EXTRA solutions inside the range $0 \le x < 180^{\circ}$ then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 \le x < 180^{\circ}$.		(4)
				[12]

Question Number	Scheme		Marks
Q7	$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}$ $x \in \mathbb{R}, \ x \neq -4, \ x \neq 2.$		
(a)	$f(x) = \frac{(x-2)(x+4) - 2(x-2) + x - 8}{(x-2)(x+4)}$	An attempt to combine to one fraction Correct result of combining all three fractions	M1 A1
	$= \frac{x^2 + 2x - 8 - 2x + 4 + x - 8}{(x - 2)(x + 4)}$		
	$= \frac{x^2 + x - 12}{\left[(x+4)(x-2)\right]}$	Simplifies to give the correct numerator. Ignore omission of denominator	A1
	$= \frac{(x+4)(x-3)}{[(x+4)(x-2)]}$	An attempt to factorise the numerator.	dM1
	$=\frac{(x-3)}{(x-2)}$	Correct result	A1 cso AG (5)
(b)	$g(x) = \frac{e^x - 3}{e^x - 2} x \in \mathbb{R}, \ x \neq \ln 2.$		
	Apply quotient rule: $\begin{cases} u = e^{x} - 3 & v = e^{x} - 2 \\ \frac{du}{dx} = e^{x} & \frac{dv}{dx} = e^{x} \end{cases}$		
	$g'(x) = \frac{e^{x}(e^{x}-2) - e^{x}(e^{x}-3)}{(e^{x}-2)^{2}}$	Applying $\frac{vu' - uv'}{v^2}$ Correct differentiation	M1 A1
	$= \frac{e^{2x} - 2e^x - e^{2x} + 3e^x}{(e^x - 2)^2}$		
	$=\frac{\mathrm{e}^x}{(\mathrm{e}^x-2)^2}$	Correct result	A1 AG cso (3)

Question Number	Scheme	
(c)	$g'(x) = 1 \implies \frac{e^x}{(e^x - 2)^2} = 1$	
	$e^x = (e^x - 2)^2$ Puts their differentiated numerator equal to their denominator. $e^x = e^{2x} - 2e^x - 2e^x + 4$	M1
	$\underline{e^{2x} - 5e^x + 4} = 0$ $\underline{e^{2x} - 5e^x + 4}$	A1
	$(e^x - 4)(e^x - 1) = 0$ Attempt to factorise or solve quadratic in e^x	M1
	$e^x = 4$ or $e^x = 1$	
	$x = \ln 4 \text{ or } x = 0$ both $x = 0$, $\ln 4$	A1 (4)
		[12]

	stion nber		Scheme		Mark	S
Q8	(a)	$\sin 2x = \underline{2\sin x \cos x}$	$2\sin x \cos x$	B1	aef	(1)
	(b)	$\csc x - 8\cos x = 0$	$0, 0 < x < \pi$			
		$\frac{1}{\sin x} - 8\cos x = 0$	Using $\csc x = \frac{1}{\sin x}$	M1		
		$\frac{1}{\sin x} = 8\cos x$				
		$1 = 8\sin x \cos x$				
		$1 = 4(2\sin x \cos x)$				
		$1 = 4\sin 2x$				
		$\sin 2x = \frac{1}{4}$	$\sin 2x = k$, where $-1 < k < 1$ and $k \neq 0$	M1		
			$\sin 2x = \frac{1}{4}$	<u>A1</u>		
		Radians $2x = \{0.25268, 2\}$.88891}			
		Degrees $2x = \{14.4775, 16$	55.5225}			
		Radians $x = \{0.12634, 1.4\}$	Either arwt 7.24 or 82.76 or 0.13 or 1.44 or 1.45 or awrt 0.04π or	A 1		
		Degrees $x = \{7.23875, 82\}$				
			Both 0.13 and 1.44 Solutions for the final two A marks must be given in x only. If there are any EXTRA solutions inside the range $0 < x < \pi$ then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 < x < \pi$.	A1	cao	(5)
						[6]

June 2009 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks
Q1	$f(x) = \frac{1}{\sqrt{4+x}} = (4+x)^{-\frac{1}{2}}$	M1
	$= (4)^{-\frac{1}{2}} (1 + \dots)^{-\frac{1}{2}} $ $\frac{1}{2} (1 + \dots)^{-\frac{1}{2}} $ or $\frac{1}{2\sqrt{1 + \dots}}$	B1
	$= \dots \left(1 + \left(-\frac{1}{2}\right)\left(\frac{x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\left(\frac{x}{4}\right)^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x}{4}\right)^3 + \dots\right)$	M1 A1ft
	ft their $\left(\frac{x}{4}\right)$	
	$= \frac{1}{2} - \frac{1}{16}x_1 + \frac{3}{256}x^2 - \frac{5}{2048}x^3 + \dots$	A1, A1 (6)
		[6]
	Alternative	
	$f(x) = \frac{1}{\sqrt{4+x}} = (4+x)^{-\frac{1}{2}}$	M1
	$= \underline{4^{-\frac{1}{2}}} + \left(-\frac{1}{2}\right)4^{-\frac{3}{2}}x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2}4^{-\frac{5}{2}}x^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1.2.3}4^{-\frac{7}{2}}x^3 + \dots$	<u>B1</u> M1 A1
	$= \frac{1}{2} - \frac{1}{16}x, + \frac{3}{256}x^2 - \frac{5}{2048}x^3 + \dots$	A1, A1 (6)

Question Number Scheme			Mar	ks	
Q2	(a)	1.14805	awrt 1.14805	B1	(1)
	(b)	$A \approx \frac{1}{2} \times \frac{3\pi}{8} (\dots)$		B1	
		$= \dots \left(3 + 2(2.77164 + 2.12132 + 1.14805) + 0\right)$	0 can be implied	M1	
		$= \frac{3\pi}{16} (3 + 2(2.77164 + 2.12132 + 1.14805))$	ft their (a)	A1ft	
		$= \frac{3\pi}{16} \times 15.08202 \dots = 8.884$	cao	A1	(4)
	(c)	$\int 3\cos\left(\frac{x}{3}\right) dx = \frac{3\sin\left(\frac{x}{3}\right)}{\frac{1}{3}}$		M1 A1	
		$=9\sin\left(\frac{x}{3}\right)$			
		$A = \left[9\sin\left(\frac{x}{3}\right)\right]_0^{\frac{3\pi}{2}} = 9 - 0 = 9$	cao	A1	(3)
					[8]

Que:	stion nber	Scheme	Mar	ks
Q3	(a)	$f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{x+3}$ $4-2x = A(x+1)(x+3) + B(2x+1)(x+3) + C(2x+1)(x+1)$ A method for evaluating one constant	M1 M1	
		$x \to -\frac{1}{2}$, $5 = A(\frac{1}{2})(\frac{5}{2}) \Rightarrow A = 4$ any one correct constant $x \to -1$, $6 = B(-1)(2) \Rightarrow B = -3$	A1	
		$x \to -3$, $10 = C(-5)(-2) \Rightarrow C = 1$ all three constants correct	A1	(4)
	(b)	(i) $\int \left(\frac{4}{2x+1} - \frac{3}{x+1} + \frac{1}{x+3}\right) dx$		
		$= \frac{4}{3}\ln(2x+1) - 3\ln(x+1) + \ln(x+3) + C$ A1 two ln terms correct	M1 A11	ft
		All three ln terms correct and " $+C$ "; ft constants	A1ft	(3)
		(ii) $\left[2\ln(2x+1)-3\ln(x+1)+\ln(x+3)\right]_0^2$		
		$= (2 \ln 5 - 3 \ln 3 + \ln 5) - (2 \ln 1 - 3 \ln 1 + \ln 3)$	M1	
		$=3\ln 5 - 4\ln 3$		
		$=\ln\left(\frac{5^3}{3^4}\right)$	M1	
		$=\ln\!\left(\frac{125}{81}\right)$	A1	(3)
				[10]

	stion nber	Scheme	М	arks
Q4	(a)	$e^{-2x} \frac{dy}{dx} - 2y e^{-2x} = 2 + 2y \frac{dy}{dx}$ A1 correct RHS	- M1 A	. 1
		$\frac{\mathrm{d}}{\mathrm{d}x}\left(y\mathrm{e}^{-2x}\right) = \mathrm{e}^{-2x}\frac{\mathrm{d}y}{\mathrm{d}x} - 2y\mathrm{e}^{-2x}$	B1	
		$(e^{-2x} - 2y)\frac{dy}{dx} = 2 + 2ye^{-2x}$	- M1	
		$\frac{dy}{dx} = \frac{2 + 2y e^{-2x}}{e^{-2x} - 2y}$	A1	(5)
	(b)	At P, $\frac{dy}{dx} = \frac{2+2e^0}{e^0-2} = -4$ Using $mm' = -1$	M1	
		$m'=rac{1}{4}$	M1	
		$y-1=\frac{1}{4}(x-0)$	M1	
		x-4y+4=0 or any integer multiple	A1	(4)
				[9]
		Alternative for (a) differentiating implicitly with respect to y.		
		$e^{-2x} - 2y e^{-2x} \frac{dx}{dy} = 2 \frac{dx}{dy} + 2y$ A1 correct RHS	M1 A	1 1
		$\frac{\mathrm{d}}{\mathrm{d}y} \left(y e^{-2x} \right) = e^{-2x} - 2y e^{-2x} \frac{\mathrm{d}x}{\mathrm{d}y}$ $\left(2 + 2y e^{-2x} \right) \frac{\mathrm{d}x}{\mathrm{d}y} = e^{-2x} - 2y$	B1	
			M1	
		$\frac{dx}{dy} = \frac{e^{-2x} - 2y}{2 + 2y e^{-2x}}$		
		$\frac{dy}{dx} = \frac{2 + 2y e^{-2x}}{e^{-2x} - 2y}$	A1	(5)

	stion nber	Scheme	Mark	s
Q5	(a)	$\frac{dx}{dt} = -4\sin 2t , \frac{dy}{dt} = 6\cos t$ $\frac{dy}{dx} = -\frac{6\cos t}{4\sin 2t} \left(= -\frac{3}{4\sin t} \right)$ At $t = \frac{\pi}{3}$, $m = -\frac{3}{4 \times \frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2}$ accept equivalents, awrt -0.87	B1, B1 M1	(4)
	(b)	Use of $\cos 2t = 1 - 2\sin^2 t$ $\cos 2t = \frac{x}{2}, \sin t = \frac{y}{6}$ $\frac{x}{2} = 1 - 2\left(\frac{y}{6}\right)^2$ Leading to $y = \sqrt{(18 - 9x)} \left(= 3\sqrt{(2 - x)}\right) \text{cao}$	M1 M1 A1	
		Leading to $y = \sqrt{(18-9x)} \left(-3\sqrt{(2-x)}\right)$ can $k = 2$	B1	(4)
	(c)	$0 \le f(x) \le 6$ either $0 \le f(x)$ or $f(x) \le 6$ Fully correct. Accept $0 \le y \le 6$, $[0, 6]$	B1 B1	(2) [10]
		Alternatives to (a) where the parameter is eliminated		
		$y = (18 - 9x)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2} (18 - 9x)^{-\frac{1}{2}} \times (-9)$ At $t = \frac{\pi}{3}$, $x = \cos \frac{2\pi}{3} = -1$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\sqrt{(27)}} \times -9 = -\frac{\sqrt{3}}{2}$ $y^2 = 18 - 9x$	B1 B1 M1 A1	(4)
		$2y\frac{dy}{dx} = -9$ At $t = \frac{\pi}{3}$, $y = 6\sin\frac{\pi}{3} = 3\sqrt{3}$ $\frac{dy}{dx} = -\frac{9}{2\times3\sqrt{3}} = -\frac{\sqrt{3}}{2}$	B1 B1 M1 A1	(4)

Ques		Scheme	Mark	S
Q6	(a)	$\int \sqrt{(5-x)} dx = \int (5-x)^{\frac{1}{2}} dx = \frac{(5-x)^{\frac{3}{2}}}{-\frac{3}{2}} (+C)$ $\left(= -\frac{2}{3} (5-x)^{\frac{3}{2}} + C \right)$	M1 A1	(2)
	(b)	(i) $\int (x-1)\sqrt{(5-x)} dx = -\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} + \frac{2}{3}\int (5-x)^{\frac{3}{2}} dx$ $= \qquad +\frac{2}{3} \times \frac{(5-x)^{\frac{5}{2}}}{-\frac{5}{2}} (+C)$ $= -\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} - \frac{4}{15}(5-x)^{\frac{5}{2}} (+C)$	M1 A1ft M1 A1	(4)
		(ii) $\left[-\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} - \frac{4}{15}(5-x)^{\frac{5}{2}} \right]_{1}^{5} = (0-0) - \left(0 - \frac{4}{15} \times 4^{\frac{5}{2}} \right)$ $= \frac{128}{15} \left(= 8 \frac{8}{15} \approx 8.53 \right) \text{awrt } 8.53$	M1 A1	(2) [8]
		Alternatives for (b) and (c) (b) $u^{2} = 5 - x \Rightarrow 2u \frac{du}{dx} = -1$ $\left(\Rightarrow \frac{dx}{du} = -2u\right)$ $\int (x-1)\sqrt{(5-x)} dx = \int (4-u^{2})u \frac{dx}{du} du = \int (4-u^{2})u(-2u) du$ $= \int (2u^{4} - 8u^{2}) du = \frac{2}{5}u^{5} - \frac{8}{3}u^{3} (+C)$ $= \frac{2}{5}(5-x)^{\frac{5}{2}} - \frac{8}{3}(5-x)^{\frac{3}{2}} (+C)$	M1 A1 - M1 - A1	
		(c) $x = 1 \Rightarrow u = 2, x = 5 \Rightarrow u = 0$ $\left[\frac{2}{5}u^5 - \frac{8}{3}u^3\right]_2^0 = (0 - 0) - \left(\frac{64}{5} - \frac{64}{3}\right)$ $= \frac{128}{15} \left(=8\frac{8}{15} \approx 8.53\right)$ awrt 8.53	M1 A1	(2)

Question Number	Scheme	Marks
Q7 (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 10 \\ 14 \\ -4 \end{pmatrix} - \begin{pmatrix} 8 \\ 13 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ or $\overrightarrow{BA} = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$	M1
	$\mathbf{r} = \begin{pmatrix} 8 \\ 13 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \text{ or } \mathbf{r} = \begin{pmatrix} 10 \\ 14 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} $ accept equivalents	M1 A1ft (3)
(b)	$\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC} = \begin{pmatrix} 10\\14\\-4 \end{pmatrix} - \begin{pmatrix} 9\\9\\6 \end{pmatrix} = \begin{pmatrix} 1\\5\\-10 \end{pmatrix}$ or $\overrightarrow{BC} = \begin{pmatrix} -1\\-5\\10 \end{pmatrix}$	
	$CB = \sqrt{(1^2 + 5^2 + (-10)^2)} = \sqrt{(126)} (= 3\sqrt{14} \approx 11.2)$ awrt 11.2	M1 A1 (2)
(c)	$\overrightarrow{CB}.\overrightarrow{AB} = \left \overrightarrow{CB} \right \left \overrightarrow{AB} \right \cos \theta$	
	$(\pm)(2+5+20) = \sqrt{126}\sqrt{9}\cos\theta$	M1 A1
	$\cos \theta = \frac{3}{\sqrt{14}} \implies \theta \approx 36.7^{\circ}$ awrt 36.7°	A1 (3)
(d)	d	
	$\frac{d}{\sqrt{126}} = \sin \theta$ $d = 3\sqrt{5} (\approx 6.7)$ awrt 6.7	M1 A1ft A1 (3)
(e)	$BX^2 = BC^2 - d^2 = 126 - 45 = 81$	M1
	! $CBX = \frac{1}{2} \times BX \times d = \frac{1}{2} \times 9 \times 3\sqrt{5} = \frac{27\sqrt{5}}{2} (\approx 30.2)$ awrt 30.1 or 30.2	M1 A1 (3)
		[14]
	Alternative for (e)	
	! $CBX = \frac{1}{2} \times d \times BC \sin \angle XCB$	M1
	$= \frac{1}{2} \times 3\sqrt{5} \times \sqrt{126} \sin(90 - 36.7)^{\circ}$ sine of correct angle	M1
	≈ 30.2 $\frac{27\sqrt{5}}{2}$, awrt 30.1 or 30.2	A1 (3)

Ques Num		Scheme		Vark	s
Q8	(a)	$\int \sin^2\theta d\theta = \frac{1}{2} \int (1 - \cos 2\theta) d\theta = \frac{1}{2} \theta - \frac{1}{4} \sin 2\theta (+C)$	M1	A 1	(2)
	(b)	$x = \tan \theta \implies \frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2 \theta$			
		$\pi \int y^2 dx = \pi \int y^2 \frac{dx}{d\theta} d\theta = \pi \int (2\sin 2\theta)^2 \sec^2 \theta d\theta$	M1	A 1	
		$=\pi \int \frac{\left(2 \times 2 \sin \theta \cos \theta\right)^2}{\cos^2 \theta} d\theta$	M1		
		$=16\pi \int \sin^2 \theta d\theta \qquad \qquad k=16\pi$	A1		
		$x = 0 \implies \tan \theta = 0 \implies \theta = 0, x = \frac{1}{\sqrt{3}} \implies \tan \theta = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6}$	B1		(5)
		$\left(V = 16\pi \int_0^{\frac{\pi}{6}} \sin^2 \theta \mathrm{d}\theta\right)$			
	(c)	$V = 16\pi \left[\frac{1}{2}\theta - \frac{\sin 2\theta}{4} \right]_0^{\frac{\pi}{6}}$	M1		
		$=16\pi \left[\left(\frac{\pi}{12} - \frac{1}{4} \sin \frac{\pi}{3} \right) - (0-0) \right]$ Use of correct limits	M1		
		$=16\pi \left(\frac{\pi}{12} - \frac{\sqrt{3}}{8}\right) = \frac{4}{3}\pi^2 - 2\pi\sqrt{3}$ $p = \frac{4}{3}, q = -2$	A1		(3)
					[10]

June 2009 6667 Further Pure Mathematics FP1 (new) Mark Scheme

Question Number		Scheme		Marks	
Q1 ((a)	z,	B1	(*	1)
((b)	$ z_1 = \sqrt{2^2 + (-1)^2} = \sqrt{5}$ (or awrt 2.24)	M1		2)
	(c) (d)	$\alpha = \arctan\left(\frac{1}{2}\right) \text{ or } \arctan\left(-\frac{1}{2}\right)$ $\arg z_1 = -0.46 \text{ or } 5.82 \text{ (awrt) (answer in degrees is A0 unless followed by correct conversion)}$ $\frac{-8+9i}{2-i} \times \frac{2+i}{2+i}$	M1 A1	(2	2)
		$= \frac{-16 - 8i + 18i - 9}{5} = -5 + 2i \text{ i.e. } a = -5 \text{ and } b = 2 \text{ or } -\frac{2}{5}a$	A1		3) 3]
		Alternative method to part (d)			
		-8+9i=(2-i)(a+bi), and so $2a+b=-8$ and $2b-a=9$ and attempt to solve as far	M1		
		as equation in one variable			
		So $a = -5$ and $b = 2$	A1	A1cao	
Notes		(a) B1 needs both complex numbers as either points or vectors, in correct quadrants and with 'reasonably correct' relative scale			
		(b) M1 Attempt at Pythagoras to find modulus of either complex number			
		A1 condone correct answer even if negative sign not seen in (-1) term			
		A0 for $\pm\sqrt{5}$			
		(c) arctan 2 is M0 unless followed by $\frac{3\pi}{2} + \arctan 2$ or $\frac{\pi}{2} - \arctan 2$ Need to be clear			
		that $argz = -0.46$ or 5.82 for A1			
		(d) M1 Multiply numerator and denominator by conjugate of their denominator			
		A1 for -5 and A1 for 2i (should be simplified)			
		Alternative scheme for (d) Allow slips in working for first M1			

Question Number	Scheme	Marks
Q2 (a)	$r(r+1)(r+3) = r^3 + 4r^2 + 3r$, so use $\sum r^3 + 4\sum r^2 + 3\sum r$	M1
	$= \frac{1}{4}n^{2}(n+1)^{2} + 4\left(\frac{1}{6}n(n+1)(2n+1)\right) + 3\left(\frac{1}{2}n(n+1)\right)$	A1 A1
	$= \frac{1}{12}n(n+1)\left\{3n(n+1) + 8(2n+1) + 18\right\} \text{or} = \frac{1}{12}n\left\{3n^3 + 22n^2 + 45n + 26\right\}$	
	or = = $\frac{1}{12}(n+1)\{3n^3+19n^2+26n\}$	M1 A1
(1)	$= \frac{1}{12}n(n+1)\left\{3n^2 + 19n + 26\right\} = \frac{1}{12}n(n+1)(n+2)(3n+13) \qquad (k=13)$	M1 A1cao (7)
(b)	$\sum_{21}^{40} = \sum_{1}^{40} - \sum_{1}^{20}$	M1
	$= \frac{1}{12}(40 \times 41 \times 42 \times 133) - \frac{1}{12}(20 \times 21 \times 22 \times 73) = 763420 - 56210 = 707210$	A1 cao (2) [9]
Notes	(a) M1 expand and must start to use at least one standard formula	
	First 2 A marks: One wrong term A1 A0, two wrong terms A0 A0.	
	M1: Take out factor $kn(n + 1)$ or kn or $k(n + 1)$ directly or from quartic	
	A1: See scheme (cubics must be simplified)	
	M1: Complete method including a quadratic factor and attempt to factorise it	
	A1 Completely correct work.	
	Just gives $k = 13$, no working is 0 marks for the question.	
	Alternative method	
	Expands $(n + 1)(n + 2)(3n + k)$ and confirms that it equals	
	${3n^3 + 22n^2 + 45n + 26}$ together with statement $k = 13$ can earn last M1A1	
	The previous M1A1 can be implied if they are using a quartic.	
	(b) M 1 is for substituting 40 and 20 into their answer to (a) and subtracting. (NB not 40 and 21) Adding terms is M0A0 as the question said "Hence"	

Question Number	Scheme	Marks
Q3 (a)	$x^2 + 4 = 0$ \Rightarrow $x = ki$, $x = \pm 2i$	M1, A1
	Solving 3-term quadratic	M1
	$x = \frac{-8 \pm \sqrt{64 - 100}}{2} = -4 + 3i \text{ and } -4 - 3i$	A1 A1ft
(b)	2i + (-2i) + (-4 + 3i) + (-4 - 3i) = -8	(5) M1 A1cso (2) [7]
	Alternative method: Expands $f(x)$ as quartic and chooses \pm coefficient of x^3	M1
	-8	A1 cso
Notes	 (a) Just x = 2i is M1 A0 x = ±2 is M0A0 M1 for solving quadratic follows usual conventions, then A1 for a correct root (simplified as here) and A1ft for conjugate of first answer. Accept correct answers with no working here. Do not give accuracy marks for factors unless followed by roots. (b) M1 for adding four roots of which at least two are complex conjugates and getting a real answer. A1 for -8 following correct roots or the alternative method. If any incorrect working in part (a) this A mark will be A0 	

Questio Numbe	√cnρmρ	Mark	(S
Q4 (a	$f(2.2) = 2.2^3 - 2.2^2 - 6$ (= -0.192)	M1	
	$f(2.3) = 2.3^3 - 2.3^2 - 6$ (= 0.877)	IVII	
/۱	Change of sign \Rightarrow Root need numerical values correct (to 1 s.f.).	A1	(2)
(k	1 (%) 3% 2%	B1 B1	
	f'(2.2) = 10.12 $f(x_1) = -0.192$		
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.2 - \frac{-0.192}{10.12}$	M1 A1ft	
	= 2.219	A1cao	(5)
(0	$\frac{\alpha - 2.2}{\pm' 0.192'} = \frac{2.3 - \alpha}{\pm' 0.877'} \qquad \text{(or equivalent such as } \frac{k}{\pm' 0.192'} = \frac{0.1 - k}{\pm' 0.877'} \text{ .)}$	M1	(0)
	$\alpha(0.877 + 0.192) = 2.3 \times 0.192 + 2.2 \times 0.877$	A1	
	or $k(0.877 + 0.192) = 0.1 \times 0.192$, where $\alpha = 2.2 + k$	/ (1	
	so $\alpha \approx 2.218$ (2.21796) (Allow awrt)		(3) [10]
Alternativ	Oses equation of fine joining $(2.2, -0.172)$ to $(2.3, 0.877)$ and substitutes $y = 0$	M1	
	$y + 0.192 = \frac{0.192 + 0.877}{0.1}(x - 2.2)$ and $y = 0$, so $\alpha \approx 2.218$ or awrt as before	A1, A1	
	(NB Gradient = 10.69)		
Notes	(a) M1 for attempt at f(2.2) and f(2.3)		
	A1 need indication that there is a change of sign – (could be –0.19<0, 0.88>0) and		
	need conclusion. (These marks may be awarded in other parts of the question if not done in part (a))		
	(b) B1 for seeing correct derivative (but may be implied by later correct work)		
	B1 for seeing 10.12 or this may be implied by later work		
	M1 Attempt Newton-Raphson with their values		
	A1ft may be implied by the following answer (but does not require an evaluation)		
	Final A1 must 2.219 exactly as shown. So answer of 2.21897 would get 4/5		
	If done twice ignore second attempt		
	(c) M1 Attempt at ratio with their values of \pm f(2.2) and \pm f(2.3).		
	N.B. If you see $0.192 - \alpha$ or $0.877 - \alpha$ in the fraction then this is M0		
	A1 correct linear expression and definition of variable if not α (may be implied by		
	final correct answer- does not need 3 dp accuracy)		
	A1 for awrt 2.218		
	If done twice ignore second attempt		

Question Number	Scheme	Marks
Q5 (a)	$\mathbf{R}^2 = \begin{pmatrix} a^2 + 2a & 2a + 2b \\ a^2 + ab & 2a + b^2 \end{pmatrix}$	M1 A1 A1 (3)
(b)	Puts their $a^2 + 2a = 15$ or their $2a + b^2 = 15$ or their $(a^2 + 2a)(2a + b^2) - (a^2 + ab)(2a + 2b) = 225$ (or to 15),	M1,
	Puts their $a^2 + ab = 0$ or their $2a + 2b = 0$	M1
	Solve to find either <i>a</i> or <i>b</i>	M1
	a = 3, b = -3	A1, A1 (5) [8]
Alternative for (b)	Uses $\mathbb{R}^2 \times$ column vector = 15 × column vector, and equates rows to give two equations in a and b only Solves to find either a or b as above method	M1, M1 M1 A1 A1
Notes	(a) 1 term correct: M1 A0 A0 2 or 3 terms correct: M1 A1 A0	
	 (b) M1 M1 as described in scheme (In the alternative scheme column vector can be general or specific for first M1 but must be specific for 2nd M1) M1 requires solving equations to find a and/or b (though checking that correct answer satisfies the equations will earn this mark) This mark can be given independently of the first two method marks. So solving M² = 15M for example gives M0M0M1A0A0 in part (b) Also putting leading diagonal = 0 and other diagonal = 15 is M0M0M1A0A0 (No possible solutions as a >0) A1 A1 for correct answers only Any Extra answers given, e.g. a = -5 and b = 5 or wrong answers – deduct last A1 awarded So the two sets of answers would be A1 A0 Just the answer . a = -5 and b = 5 is A0 A0 Stopping at two values for a or for b – no attempt at other is A0A0 Answer with no working at all is 0 marks 	

Question Number	Scheme	Marks
Q6 (a)	$y^2 = (8t)^2 = 64t^2$ and $16x = 16 \times 4t^2 = 64t^2$ Or identifies that $a = 4$ and uses general coordinates $(at^2, 2at)$	B1 (1)
(b)	(4,0)	(1) B1
(c)	$y = 4x^{\frac{1}{2}} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{-\frac{1}{2}}$	B1
	Replaces x by $4t^2$ to give gradient $ [2(4t^2)^{-\frac{1}{2}} = \frac{2}{2t} = \frac{1}{t}] $	M1,
	Uses Gradient of normal is $-\frac{1}{\text{gradient of curve}}$ [-t]	M1
	$y - 8t = -t(x - 4t^2)$ \Rightarrow $y + tx = 8t + 4t^3$ (*)	M1 A1cso (5)
(d)	At N, $y = 0$, so $x = 8 + 4t^2$ or $\frac{8t + 4t^3}{t}$	B1
	Base $SN = (8+4t^2)-4 \ (=4+4t^2)$	B1ft
	Area of $\triangle PSN = \frac{1}{2}(4+4t^2)(8t) = 16t(1+t^2)$ or $16t+16t^3$ for $t > 0$	
	{Also Area of $\triangle PSN = \frac{1}{2}(4+4t^2)(-8t) = -16t(1+t^2)$ for $t < 0$ } this is not required	
	Alternatives: (c) $\frac{dx}{dt} = 8t$ and $\frac{dy}{dt} = 8$ B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t}$ M1, then as in main scheme.	
	(c) $2y \frac{dy}{dx} = 16$ B1 (or uses $x = \frac{y^2}{8}$ to give $\frac{dx}{dy} = \frac{2y}{8}$)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{y} = \frac{8}{8t} = \frac{1}{t}$ M1, then as in main scheme.	
Notes	(c) Second M1 – need not be function of t Third M1 requires linear equation (not fraction) and should include the parameter t but could be given for equation of tangent (So tangent equation loses 2 marks only and could gain B1M1M0M1A0) (d) Second B1 does not require simplification and may be a constant rather than an expression in t . M1 needs correct area of triangle formula using $\frac{1}{2}$ 'their SN ' $\times 8t$ Or may use two triangles in which case need $(4t^2 - 4)$ and $(4t^2 + 8 - 4t^2)$ for B1ft Then Area of $\Delta PSN = \frac{1}{2}(4t^2 - 4)(8t) + \frac{1}{2}(4t^2 + 8 - 4t^2)(8t) = 16t(1+t^2)$ or $16t + 16t^3$	
	2 2 (51) 101 (171) 01 101 +101	

Question	Cohama	Moulce
Number	Scheme	Marks
Q7 (a)	Use $4a - (-2 \times -1) = 0$ \Rightarrow $a, = \frac{1}{2}$	M1, A1 (2)
(b)	Determinant: $(3 \times 4) - (-2 \times -1) = 10$ (Δ)	M1
	$\mathbf{B}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$	M1 A1cso (3)
(c)	$\frac{1}{10} \binom{4}{1} \binom{2}{3} \binom{k-6}{3k+12}, = \frac{1}{10} \binom{4(k-6)+2(3k+12)}{(k-6)+3(3k+12)}$	M1, A1ft
	$\binom{k}{k+3}$ Lies on $y = x+3$	A1 (3) [8]
	Alternatives: (c) $ \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ x+3 \end{pmatrix}, = \begin{pmatrix} 3x-2(x+3) \\ -x+4(x+3) \end{pmatrix}, $	
		M1, A1,
	$= {x-6 \choose 3x+12}, \text{ which was of the form } (k-6, 3k+12)$	A1
	$ \operatorname{Or} \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, = \begin{pmatrix} 3x - 2y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} k - 6 \\ 3k + 12 \end{pmatrix}, \text{ and solves simultaneous equations} $	M1
	Both equations correct and eliminate one letter to get $x = k$ or $y = k + 3$ or $10x - 10y = -30$ or equivalent.	A1
	Completely correct work (to $x = k$ and $y = k + 3$), and conclusion lies on $y = x + 3$	A1
Notes	 (a) Allow sign slips for first M1 (b) Allow sign slip for determinant for first M1 (This mark may be awarded for 1/10 appearing in inverse matrix.) 	
	Second M1 is for correctly treating the 2 by 2 matrix, ie for $\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$	
	Watch out for determinant $(3+4)-(-1+-2)=10-M0$ then final answer is A0 (c) M1 for multiplying matrix by appropriate column vector A1 correct work (ft wrong determinant) A1 for conclusion	

Question Number	Scheme	Marks	
Q8 (a)	f(1) = 5 + 8 + 3 = 16, (which is divisible by 4). (:True for $n = 1$).	B1	
	Using the formula to write down $f(k+1)$, $f(k+1) = 5^{k+1} + 8(k+1) + 3$	M1 A1	
	$f(k+1) - f(k) = 5^{k+1} + 8(k+1) + 3 - 5^k - 8k - 3$ $= 5(5^k) + 8k + 8 + 3 - 5^k - 8k - 3 = 4(5^k) + 8$	M1 A1	
	$f(k+1) = 4(5^k + 2) + f(k)$, which is divisible by 4	A1ft	
	∴ True for $n = k + 1$ if true for $n = k$. True for $n = 1$, ∴ true for all n .	A1cso (7)	
(b)	For $n = 1$, $\begin{pmatrix} 2n+1 & -2n \\ 2n & 1-2n \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{1}$ (:. True for $n = 1$.)	B1	
	$ \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+1 & -2k \\ 2k & 1-2k \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2k+3 & -2k-2 \\ 2k+2 & -2k-1 \end{pmatrix} $	M1 A1 A1	
	$= \begin{pmatrix} 2(k+1)+1 & -2(k+1) \\ 2(k+1) & 1-2(k+1) \end{pmatrix}$	M1 A1	
	∴ True for $n = k + 1$ if true for $n = k$. True for $n = 1$, ∴ true for all n	A1 cso (7)	
(a) Alternative	$f(k+1) = 5(5^k) + 8k + 8 + 3$ M1		
for 2 nd M:	$= 4(5^{k}) + 8 + (5^{k} + 8k + 3)$ A1 or $= 5(5^{k} + 8k + 3) - 32k - 4$		
	$= 4(5^{k} + 2) + f(k), or = 5f(k) - 4(8k+1)$ which is divisible by 4 A1 (or similar methods)		
Notes	 (a) B1 Correct values of 16 or 4 for n = 1 or for n = 0 (Accept "is a multiple of") M1 Using the formula to write down f(k + 1) A1 Correct expression of f(k+1) (or for M1 Start method to connect f(k+1) with f(k) as shown A1 correct working toward multiples of 4, A1 ft result including f(k+1) as subject, A10 conclusion 	f(n+1)	
	 (b) B1 correct statement for n = 1 or n = 0 First M1: Set up product of two appropriate matrices – product can be either way round A1 A0 for one or two slips in simplified result A1 A1 all correct simplified A0 A0 more than two slips 		
	M1: States in terms of (k + 1) A1 Correct statement A1 for induction conclusion		
	May write $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+3 & -2k-2 \\ 2k+2 & -2k-1 \end{pmatrix}$. Then may or may not complete the proof	,	
Part (b)			
Alternative	This can be awarded the second M (substituting $k + 1$) and following A (simplification). The first three marks are awarded as before. Concluding that they have reached the san therefore a result will then be part of final A1 cso but also need other statements as in the method.	ne matrix and	

June 2009 6668 Further Pure Mathematics FP2 (new) Mark Scheme

	stion nber	Scheme		Marks
Q1	(a)	$\frac{1}{r(r+2)} = \frac{1}{2r} - \frac{1}{2(r+2)}$	$\frac{1}{2r} - \frac{1}{2(r+2)}$	B1 aef (1)
		$\sum_{r=1}^{n} \frac{4}{r(r+2)} = \sum_{r=1}^{n} \left(\frac{2}{r} - \frac{2}{r+2} \right)$		
		$= \left(\frac{2}{1} - \frac{2}{3}\right) + \left(\frac{2}{2} - \frac{2}{4}\right) + \dots + \left(\frac{2}{n-1} - \frac{2}{n+1}\right) + \left(\frac{2}{n} - \frac{2}{n+2}\right)$	List the first two terms and the last two terms	M1
		$= \frac{2}{1} + \frac{2}{2}; -\frac{2}{n+1} - \frac{2}{n+2}$	Includes the first two underlined terms and includes the final two underlined terms. $\frac{2}{1} + \frac{2}{2} - \frac{2}{n+1} - \frac{2}{n+2}$	M1 A1
		$= 3 - \frac{2}{n+1} - \frac{2}{n+2}$		
		$= \frac{3(n+1)(n+2) - 2(n+2) - 2(n+1)}{(n+1)(n+2)}$ $= \frac{3n^2 + 9n + 6 - 2n - 4 - 2n - 2}{(n+1)(n+2)}$	Attempt to combine to an at least 3 term fraction to a single fraction and an attempt to take out the brackets from their numerator.	M1
		$= \frac{3n^2 + 5n}{(n+1)(n+2)}$		
		$= \frac{n(3n+5)}{(n+1)(n+2)}$	Correct Result	A1 cso AG (5)
				[6]

Question Number	Scheme	Marks
Q2 (a)	$z^3 = 4\sqrt{2} - 4\sqrt{2}i$, $-\pi < \theta$,, π	
	$ \begin{array}{c} $	
	$r = \sqrt{\left(4\sqrt{2}\right)^2 + \left(-4\sqrt{2}\right)^2} = \sqrt{32 + 32} = \sqrt{64} = 8$ A valid attempt to find the modulus and argument of $\theta = -\tan^{-1}\left(\frac{4\sqrt{2}}{4\sqrt{2}}\right) = -\frac{\pi}{4}$ $4\sqrt{2} - 4\sqrt{2}i.$	M1
	$z^3 = 8\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$	
	So, $z = (8)^{\frac{1}{3}} \left(\cos \left(\frac{-\frac{\pi}{4}}{3} \right) + i \sin \left(\frac{-\frac{\pi}{4}}{3} \right) \right)$ Taking the cube root of the modulus and dividing the argument by 3.	M1
	$\Rightarrow z = 2\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)$ $2\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)$	A1
	Also, $z^3 = 8\left(\cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right)\right)$ Adding or subtracting 2π to the argument for $z^3 = 8\left(\cos\left(-\frac{9\pi}{4}\right) + i\sin\left(-\frac{9\pi}{4}\right)\right)$ argument for z^3 in order to find other roots.	M1
	$\Rightarrow z = 2\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$ Any one of the final two roots	A1
	and $z = 2\left(\cos\left(\frac{-3\pi}{4}\right) + i\sin\left(\frac{-3\pi}{4}\right)\right)$ Both of the final two roots.	A1
	Special Case 1 : Award SC: M1M1A1M1A0A0 for ALL three of $2\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$, $2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ and $2\left(\cos\left(\frac{-7\pi}{12}\right) + i\sin\left(\frac{-7\pi}{12}\right)\right)$.	[6]
	Special Case 2: If <i>r</i> is incorrect (and not equal to 8) and candidate states the brackets () correctly then give the first accuracy mark ONLY where this is applicable.	

Question Number	Scheme	Marks
Q3	$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} - y \cos x = \sin 2x \sin x$	
	$\frac{dy}{dx} - \frac{y \cos x}{\sin x} = \frac{\sin 2x \sin x}{\sin x}$ An attempt to divide every te in the differential equation sin Can be impli	by M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin x} = \sin 2x$	
	Integrating factor = $e^{\int -\frac{\cos x}{\sin x} dx}$ = $e^{-\ln \sin x}$ $e^{\int \pm \frac{\cos x}{\sin x} (dx)}$ or $e^{\int \pm \frac{\cos x}{\sin x} (dx)}$ or $e^{\ln \cos x}$ or $e^{\ln \cos x}$	
	$= \frac{1}{\sin x} \frac{1}{\sin x} \text{ or } (\sin x)^{-1} \text{ or cose}$	A1 aef
	$\left(\frac{1}{\sin x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin^2 x} = \frac{\sin 2x}{\sin x}$	
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\sin x} \right) = \sin 2x \times \frac{1}{\sin x}$ $\frac{\mathrm{d}}{\mathrm{d}x} \left(y \times \text{their I.F.} \right) = \sin 2x \times \text{their I.F.}$	r I.F M1
	$\frac{d}{dx}\left(\frac{y}{\sin x}\right) = 2\cos x$ $\frac{d}{dx}\left(\frac{y}{\sin x}\right) = 2\cos x$ $\frac{y}{\sin x} = \int 2\cos x \left(\cos x\right)$	
	$\frac{y}{\sin x} = \int 2\cos x \mathrm{d}x$	
	$\frac{y}{\sin x} = 2\sin x + K$ A credible attempt to integret the RHS with/without +	
	$y = 2\sin^2 x + K\sin x \qquad \qquad y = 2\sin^2 x + K\sin x$	A1 cao [8]

Question Number	Scheme		Marks
Q4	$A = \frac{1}{2} \int_{0}^{2\pi} \left(a + 3\cos\theta \right)^{2} d\theta$	Applies $\frac{1}{2} \int_{0}^{2\pi} r^{2} (d\theta)$ with correct limits. Ignore $d\theta$.	B1
	$(a+3\cos\theta)^2 = a^2 + 6a\cos\theta + 9\cos^2\theta$		
	$= a^2 + 6a\cos\theta + 9\left(\frac{1+\cos 2\theta}{2}\right)$	$\cos^2 \theta = \frac{\pm 1 \pm \cos 2\theta}{2}$ Correct underlined expression.	M1 A1
	$A = \frac{1}{2} \int_{0}^{2\pi} \left(a^{2} + 6a \cos \theta + \frac{9}{2} + \frac{9}{2} \cos 2\theta \right) d\theta$		
	$= \left(\frac{1}{2}\right) \left[a^2\theta + 6a\sin\theta + \frac{9}{2}\theta + \frac{9}{4}\sin 2\theta\right]_0^{2\pi}$	Integrated expression with at least 3 out of 4 terms of the form $\pm A\theta \pm B\sin\theta \pm C\theta \pm D\sin2\theta$. Ignore the $\frac{1}{2}$. Ignore limits. $a^2\theta + 6a\sin\theta + \text{correct ft}$ integration. Ignore the $\frac{1}{2}$. Ignore limits.	M1*
	$= \frac{1}{2} \left[\left(2\pi a^2 + 0 + 9\pi + 0 \right) - (0) \right]$		
	$=\pi a^2 + \frac{9\pi}{2}$	$\pi a^2 + \frac{9\pi}{2}$	A1
	Hence, $\pi a^2 + \frac{9\pi}{2} = \frac{107}{2}\pi$	Integrated expression equal to $\frac{107}{2}\pi$.	dM1*
	$a^2 + \frac{9}{2} = \frac{107}{2}$		
	$a^2 = 49$		
	As $a > 0$, $a = 7$	<i>a</i> = 7	A1 cso [8]
	Some candidates may achieve $a = 7$ from incorrect working. Such candidates will not get full marks		

Question Number	Scheme			Marks	3
Q5	$y = \sec^2 x = (\sec x)^2$				
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(\sec x)^{1}(\sec x \tan x) = 2\sec^{2} x \tan x$	Either $2(\sec x)^1(\sec x \tan x)$ or $2\sec^2 x \tan x$	B1	aef	
	Apply product rule: $\begin{cases} u = 2\sec^2 x & v = \tan x \\ \frac{du}{dx} = 4\sec^2 x \tan x & \frac{dv}{dx} = \sec^2 x \end{cases}$				
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\sec^2 x \tan^2 x + 2\sec^4 x$	Two terms added with one of either $A \sec^2 x \tan^2 x$ or $B \sec^4 x$ in the correct form. Correct differentiation	M1 A1		
	$= 4\sec^2 x(\sec^2 x - 1) + 2\sec^4 x$				
	Hence, $\frac{d^2y}{dx^2} = 6\sec^4 x - 4\sec^2 x$	Applies $\tan^2 x = \sec^2 x - 1$ leading to the correct result.	A 1	AG	(4)
(b)	$y_{\frac{\pi}{4}} = (\sqrt{2})^2 = 2, \ \left(\frac{dy}{dx}\right)_{\frac{\pi}{4}} = 2(\sqrt{2})^2 (1) = 4$	Both $y_{\frac{\pi}{4}} = 2$ and $\left(\frac{dy}{dx}\right)_{\frac{\pi}{4}} = 4$	B1		(',
	$\left(\frac{d^2 y}{dx^2}\right)_{\frac{\pi}{4}} = 6\left(\sqrt{2}\right)^4 - 4\left(\sqrt{2}\right)^2 = 24 - 8 = 16$	Attempts to substitute $x = \frac{\pi}{4}$ into both terms in the expression for $\frac{d^2y}{dx^2}.$	M1		
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 24\sec^3 x(\sec x \tan x) - 8\sec x(\sec x \tan x)$	Two terms differentiated with either $24\sec^4 x \tan x$ or $-8\sec^2 x \tan x$ being correct	M1		
	$= 24\sec^4 x \tan x - 8\sec^2 x \tan x$				
	$\left(\frac{d^2 y}{dx^2}\right)_{\frac{\pi}{4}} = 24\left(\sqrt{2}\right)^4 (1) - 8\left(\sqrt{2}\right)^2 (1) = 96 - 16 = 80$	$\left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)_{\frac{\pi}{4}} = \underline{80}$	B1		
	$\sec x \approx 2 + 4\left(x - \frac{\pi}{4}\right) + \frac{16}{2}\left(x - \frac{\pi}{4}\right)^2 + \frac{80}{6}\left(x - \frac{\pi}{4}\right)^3 + \dots$	Applies a Taylor expansion with at least 3 out of 4 terms ft correctly.	M1		
	$\left\{\sec x \approx 2 + 4\left(x - \frac{\pi}{4}\right) + 8\left(x - \frac{\pi}{4}\right)^2 + \frac{40}{3}\left(x - \frac{\pi}{4}\right)^3 + \ldots\right\}$	Correct Taylor series expansion.	A1		(6)
				[10]

Question Number	Scheme		Marks
Q6	$w = \frac{z}{z+i}, z = -i$		
(a)	$w(z+i) = z \implies wz + iw = z \implies iw = z - wz$ $\implies iw = z(1-w) \implies z = \frac{iw}{(1-w)}$	Complete method of rearranging to make z the subject.	M1
	$\Rightarrow i w = z(1 - w) \Rightarrow z = \frac{1}{(1 - w)}$	$z = \frac{\mathrm{i}w}{(1-w)}$	A1 aef
	$ z = 3 \implies \left \frac{\mathrm{i} w}{1 - w} \right = 3$	Putting $ z $ in terms of their $ z = 3$	dM1
	$\begin{cases} iw = 3 1 - w \Rightarrow w = 3 w - 1 \Rightarrow w ^2 = 9 w - 1 ^2 \\ \Rightarrow u + iv ^2 = 9 u + iv - 1 ^2 \end{cases}$		
	$\Rightarrow u^2 + v^2 = 9\left[(u-1)^2 + v^2\right]$	Applies $w = u + iv$, and uses Pythagoras correctly to get an equation in terms of u and v without any i's.	ddM1
	$\begin{cases} \Rightarrow u^2 + v^2 = 9u^2 - 18u + 9 + 9v^2 \\ \Rightarrow 0 = 8u^2 - 18u + 8v^2 + 9 \end{cases}$	Correct equation.	A1
	$\Rightarrow 0 = u^2 - \frac{9}{4}u + v^2 + \frac{9}{8}$	Simplifies down to $u^2 + v^2 \pm \alpha u \pm \beta v \pm \delta = 0.$	dddM1
	$\Rightarrow \left(u - \frac{9}{8}\right)^2 - \frac{81}{64} + v^2 + \frac{9}{8} = 0$		
	$\Rightarrow \left(u - \frac{9}{8}\right)^2 + v^2 = \frac{9}{64}$		
	{Circle} centre $\left(\frac{9}{8}, 0\right)$, radius $\frac{3}{8}$	One of centre or radius correct. Both centre and radius correct.	A1 A1 (8)
(b)		Circle indicated on the Argand diagram in the correct position in follow through quadrants. Ignore plotted coordinates.	B1ft
	o u	Region outside a circle indicated only.	B1
			(2)
			[10]

Question Number	Scheme	N	/arks	5
Q7 (a)	$y = x^2 - a^2 , a > 1$ Correct Shape. Ignore cusps. Correct coordinates.	B1 B1		(2)
(b)	$ x^{2} - a^{2} = a^{2} - x$, $a > 1$ $\{ x > a\}$, $x^{2} - a^{2} = a^{2} - x$ $\Rightarrow x^{2} + x - 2a^{2} = 0$	M1 -	aef	(2)
	$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1)(-2a^2)}}{2}$ Applies the quadratic formula or completes the square in order to find the roots.	M1		
	$\Rightarrow x = \frac{-1 \pm \sqrt{1 + 8a^2}}{2}$ Both correct "simplified down" solutions.	A1		
	$\{ x < a\}, \qquad -x^2 + a^2 = a^2 - x$ or $x^2 - a^2 = x - a^2$	M1	aef	
	$\left\{ \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0 \right\}$			
	$\Rightarrow x = 0, 1$ $x = 0$ $x = 1$	B1 A1		(6)
(c)	$ x^2 - a^2 > a^2 - x$, $a > 1$			
	$\left x^{2}-a^{2}\right >a^{2}-x$, $a>1$ $x<\frac{-1-\sqrt{1+8a^{2}}}{2} \text{{or}} x>\frac{-1+\sqrt{1+8a^{2}}}{2} \qquad x \text{ is less than their least value}$ $x \text{ is greater than their maximum}$ value	B1 f1		
	{or} $0 < x < 1$ For $\{ x < a\}$, Lowest $< x <$ Highest $0 < x < 1$	M1 A1		(4)
			[12]

Question Number	Scheme		Mark	s
Q8 (a)	$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 2e^{-t}, x = 0, \frac{dx}{dt} = 2 \text{ at } t = 0.$ $AE, m^2 + 5m + 6 = 0 \implies (m+3)(m+2) = 0$			
	$\Rightarrow m = -3, -2.$ So, $x_{CF} = Ae^{-3t} + Be^{-2t}$ $Ae^{m_1t} + Be^{m_2t}, \text{ where } m_1 \neq 0$ $Ae^{-3t} + Be^{-2t}$		M1 A1	
	$\begin{cases} x = k e^{-t} \implies \frac{dx}{dt} = -k e^{-t} \implies \frac{d^2x}{dt^2} = k e^{-t} \end{cases}$ Substitutes $k e^{-t}$ int	o the		
	$\Rightarrow k e^{-t} + 5(-k e^{-t}) + 6k e^{-t} = 2e^{-t} \Rightarrow 2k e^{-t} = 2e^{-t}$ differential equation given i ques	n the stion.	M1 A1	
	$\left\{ \text{So, } x_{\text{PI}} = e^{-t} \right\}$ $\text{So, } x = Ae^{-3t} + Be^{-2t} + e^{-t}$ their x_{CF} + their			
	So, $x = Ae^{-3t} + Be^{-2t} + e^{-t}$ their x_{CF} + their	r x _{PI}	M1*	
	$\frac{dx}{dt} = -3Ae^{-3t} - 2Be^{-2t} - e^{-t}$ Finds $\frac{dx}{dt}$ by differentiation their x_{CF} and their		dM1*	
	$t = 0, x = 0 \Rightarrow 0 = A + B + 1$ $t = 0, \frac{dx}{dt} = 2 \Rightarrow 2 = -3A - 2B - 1$ Applies $t = 0, x = 0$ and $t = 0, \frac{dx}{dt} = 2$ to $\frac{dx}{dt}$ form simultaneous equations.	$\frac{\mathrm{d}x}{\mathrm{d}t}$ to	ddM1*	
	$\begin{cases} 2A + 2B = -2 \\ -3A - 2B = 3 \end{cases}$ $\Rightarrow A = -1, B = 0$ So, $x = -e^{-3t} + e^{-t}$ $x = -e^{-3t} - e^{-3t} + e^{-t}$			
	$\Rightarrow A = -1, B = 0$			
	So, $x = -e^{-3t} + e^{-t}$ $x = -e^{-3t}$	$+ e^{-t}$	A1 cao	(8)

Question Number	Scheme		Marks
	$x = -e^{-3t} + e^{-t}$		
(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3\mathrm{e}^{-3t} - \mathrm{e}^{-t} = 0$	Differentiates their x to give $\frac{dx}{dt}$ and puts $\frac{dx}{dt}$ equal to 0.	M1
	$3 - e^{2t} = 0$	A credible attempt to solve. $t = \frac{1}{2} \ln 3$ or $t = \ln \sqrt{3}$ or awrt 0.55	dM1*
	$\Rightarrow t = \frac{1}{2} \ln 3$	$t = \frac{1}{2} \text{ in 3 or } t = \text{in } \sqrt{3} \text{ or awrt 0.33}$	AI
	So, $x = -e^{-\frac{3}{2}\ln 3} + e^{-\frac{1}{2}\ln 3} = -e^{\ln 3^{-\frac{3}{2}}} + e^{\ln 3^{-\frac{1}{2}}}$	Substitutes their <i>t</i> back into <i>x</i>	
	$x = -3^{-\frac{3}{2}} + 3^{-\frac{1}{2}}$	and an attempt to eliminate out the ln's.	ddM1
	$= -\frac{1}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}$	uses exact values to give $\frac{2\sqrt{3}}{9}$	A1 AG
	$\frac{d^2x}{dt^2} = -9e^{-3t} + e^{-t}$	Finds $\frac{d^2x}{dt^2}$	
	At $t = \frac{1}{2} \ln 3$, $\frac{d^2 x}{dt^2} = -9e^{-\frac{3}{2} \ln 3} + e^{-\frac{1}{2} \ln 3}$	and substitutes their t into $\frac{d^2x}{dt^2}$	dM1*
	$= -9(3)^{-\frac{3}{2}} + 3^{-\frac{1}{2}} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = -\frac{3}{\sqrt{3}} + \frac{1}{\sqrt{3}}$		
	As $\frac{d^2x}{dt^2} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \left\{-\frac{2}{\sqrt{3}}\right\} < 0$	$-\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} < 0 \text{ and maximum}$	A1
	then x is maximum.	conclusion.	(7)
			[15]

June 2009 6669 Further Pure Mathematics FP3 (new) Mark Scheme

Question Number	Scheme	Marks
Q1	$\frac{7}{\cosh x} - \frac{\sinh x}{\cosh x} = 5 \implies \frac{14}{e^x + e^{-x}} - \frac{(e^x - e^{-x})}{e^x + e^{-x}} = 5$	M1
	$\therefore 14 - (e^x - e^{-x}) = 5(e^x + e^{-x}) \implies 6e^x - 14 + 4e^{-x} = 0$	A1
	$\therefore 3e^{2x} - 7e^x + 2 = 0 \implies (3e^x - 1)(e^x - 2) = 0$	M1
	$\therefore e^x = \frac{1}{3} \text{ or } 2$	A1
	$x = \ln(\frac{1}{3}) \text{ or } \ln 2$	B1ft [5]
Alternative (i)	Write $7 - \sinh x = 5 \cosh x$, then use exponential substitution $7 - \frac{1}{2}(e^x - e^{-x}) = \frac{5}{2}(e^x + e^{-x})$	M1
	Then proceed as method above.	
Alternative (ii)	$(7 \operatorname{sech} x - 5)^2 = \tanh^2 x = 1 - \operatorname{sech}^2 x$	M1
,	$50 \mathrm{sech}^2 x - 70 \mathrm{sech} x + 24 = 0$	A1
	$2(5 \operatorname{sech} x - 3)(5 \operatorname{sech} x - 4) = 0$	M1
	$\operatorname{sech} x = \frac{3}{5} \text{ or } \operatorname{sech} x = \frac{4}{5}$	A1
	$x = \ln(\frac{1}{3}) \text{ or } \ln 2$	B1ft
Q2 (a)	$\mathbf{b} \times \mathbf{c} = 0\mathbf{i} + 5\mathbf{j} + 5\mathbf{k}$	M1 A1 A1 (3)
(b)	$\mathbf{a}.(\mathbf{b}\times\mathbf{c})=0+5=5$	M1 A1 ft (2)
(c)	Area of triangle $OBC = \frac{1}{2} 5\mathbf{j} + 5\mathbf{k} = \frac{5}{2} \sqrt{2}$	M1 A1 (2)
(d)	Volume of tetrahedron = $\frac{1}{6} \times 5 = \frac{5}{6}$	B1 ft (1)
		[8]

Que: Num		Scheme	М	arks
Q3	(a)	$\begin{vmatrix} 6-\lambda & 1 & -1 \\ 0 & 7-\lambda & 0 \\ 3 & -1 & 2-\lambda \end{vmatrix} = 0 : (6-\lambda)(7-\lambda)(2-\lambda) + 3(7-\lambda) = 0$	M1	
		$(7 - \lambda) = 0$ verifies $\lambda = 7$ is an eigenvalue (can be seen anywhere) $\therefore (7 - \lambda) \left\{ 12 - 8\lambda + \lambda^2 + 3 \right\} = 0 \therefore (7 - \lambda) \left\{ \lambda^2 - 8\lambda + 15 \right\} = 0$	M1 A1	
	(b)	$\therefore (7 - \lambda)(\lambda - 5)(\lambda - 3) = 0 \text{ and } 3 \text{ and } 5 \text{ are the other two eigenvalues}$ $\operatorname{Set} \begin{pmatrix} 6 & 1 & -1 \\ 0 & 7 & 0 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 7 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 3 & -1 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	M1 A	(5)
		$ (3-1 \ 2)(z) (z) (3-1 \ -5)(z) (0) $ Solve $-x+y-z=0$ and $3x-y-5z=0$ to obtain $x=3z$ or $y=4z$ and a second equation which can contain 3 variables	M1 A	1
		Obtain eigenvector as $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ (or multiple)	A1	(4) [9]

Question Number	Scheme	I	Warks	
Q4 (a)	$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \times \frac{1}{\sqrt{1 + (\sqrt{x})^2}}$	B1,	M1	
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+x}} \left(= \frac{1}{2\sqrt{x(1+x)}} \right)$	A1	((3)
(b)	$\therefore \int_{\frac{1}{4}}^{4} \frac{1}{\sqrt{x(x+1)}} dx = \left[2 \operatorname{ar} \sinh \sqrt{x} \right]_{\frac{1}{4}}^{4}$	M1		
	$= \left[2\operatorname{ar} \sinh 2 - 2\operatorname{ar} \sinh(\frac{1}{2}) \right]$	M1		
	$= \left[2\ln(2+\sqrt{5})\right] - \left[2\ln(\frac{1}{2}+\sqrt{\frac{5}{4}})\right]$	M1		
	$2\ln\frac{(2+\sqrt{5})}{(\frac{1}{2}+\sqrt{(\frac{5}{4})})} = 2\ln\frac{2(2+\sqrt{5})}{(1+\sqrt{5})} = 2\ln\frac{2(\sqrt{5}+2)(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} = 2\ln\frac{(3+\sqrt{5})}{2}$	M1		
	$= \ln \frac{(3+\sqrt{5})(3+\sqrt{5})}{4} = \ln \frac{14+6\sqrt{5}}{4} = \ln \left(\frac{7}{2} + \frac{3\sqrt{5}}{2}\right)$	A1 /	((6) [9]
Alternative (i) for part (a)	Use $sinhy = \sqrt{x}$ and state $cosh y \frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$	B1		
	$\therefore \frac{dy}{dx} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+\sinh^2 y}} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{(1+(\sqrt{x})^2)}}$	M1		
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+x}} \left(= \frac{1}{2\sqrt{x(1+x)}} \right)$	A1	((3)
Alternative (i) for part (b)	Use $x = \tan^2 \theta$, $\frac{dx}{d\theta} = 2 \tan \theta \sec^2 \theta$ to give $2 \int \sec \theta d\theta = [2 \ln(\sec \theta + \tan \theta)]$	M1		
	= $\left[2\ln(\sec\theta + \tan\theta)\right]_{\tan\theta=\frac{1}{2}}^{\tan\theta=2}$ i.e. use of limits	M1		
	then proceed as before from line 3 of scheme			
Alternative (ii) for part (b)	Use $\int \frac{1}{\sqrt{[(x+\frac{1}{2})^2 - \frac{1}{4}]}} dx = \operatorname{arcosh} \frac{x+\frac{1}{2}}{\frac{1}{2}}$	M1		
	$= \left[\operatorname{arcosh} 9 - \operatorname{arcosh} \left(\frac{3}{2} \right) \right]$	M1		
	$= \left[\ln(9 + \sqrt{80})\right] - \left[\ln(\frac{3}{2} + \frac{1}{2}\sqrt{5})\right]$	M1		
	$= \ln \frac{(9+\sqrt{80})}{(\frac{3}{2}+\frac{1}{2}\sqrt{5})} = \ln \frac{2(9+\sqrt{80})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})},$	M1		
	$= \ln \frac{2(9+4\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} = \ln \left(\frac{7}{2} + \frac{3\sqrt{5}}{2}\right)$	A1 /		(6)
			[[9]

Ques Num		Scheme	Mar	ks
Q5	(a)	$-(25-x^2)^{\frac{1}{2}}$ (+c)	M1A1	(2)
	(b)	$I_n = \int x^{n-1} \cdot \frac{x}{\sqrt{(25 - x^2)}} dx = -x^{n-1} \sqrt{25 - x^2} + \int (n-1)x^{n-2} \sqrt{(25 - x^2)} dx$	M1 A1f	t
		$I_n = \left[-x^{n-1} \sqrt{25 - x^2} \right]_0^5 + \int_0^5 \frac{(n-1)x^{n-2}(25 - x^2)}{\sqrt{(25 - x^2)}} dx$	M1	
		$I_n = 0 + 25(n-1) I_{n-2} - (n-1) I_n$	M1	
		:. $nI_n = 25(n-1)I_{n-2}$ and so $I_n = \frac{25(n-1)}{n}I_{n-2}$ **	A1	(5)
	(c)	$I_0 = \int_0^5 \frac{1}{\sqrt{(25 - x^2)}} dx = \left[\arcsin(\frac{x}{5})\right]_0^5 = \frac{\pi}{2}$	M1 A1	
		$I_4 = \frac{25 \times 3}{4} \times \frac{25 \times 1}{2} I_0 = \frac{1875}{16} \pi$	M1 A1	(4) [11]
Alternation (b)		Using substitution $x = 5\sin\theta$		
		$I_{n} = 5^{n} \int_{0}^{\frac{\pi}{2}} \sin^{n}\theta d\theta = \left[-5^{n} \sin^{n-1}\theta \cos\theta \right]_{0}^{\frac{\pi}{2}} + 5^{n} (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2}\theta \cos^{2}\theta d\theta$	M1A1	
		$= \left[-5^n \sin^{n-1} \theta \cos \theta \right]_0^{\frac{\pi}{2}} + 5^n (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} \theta (1-\sin^2 \theta) d\theta$	M1	
		$I_n = 0 + 25(n-1) I_{n-2} - (n-1) I_n$	M1	
		:. $nI_n = 25(n-1)I_{n-2}$ and so $I_n = \frac{25(n-1)}{n}I_{n-2}$ **	A1	
		(need to see that $I_{n-2} = 5^{n-2} \int_{0}^{\frac{\pi}{2}} \sin^{n-2}\theta d\theta$ for final A1)		(5)

Question Number	Scheme	Marks
Q6 (a)	$\frac{x^2}{a^2} - \frac{(mx+c)^2}{b^2} = 1 \text{and so} b^2 x^2 - a^2 (mx+c)^2 = a^2 b^2$	M1
	$\therefore (b^2 - a^2 m^2) x^2 - 2a^2 m c x - a^2 (c^2 + b^2) = 0$ Or $(a^2 m^2 - b^2) x^2 + 2a^2 m c x + a^2 (c^2 + b^2) = 0$ **	A1 (2)
(b)	$(2a^2mc)^2 = 4(a^2m^2 - b^2) \times a^2(c^2 + b^2)$	M1
	$4a^{4}m^{2}c^{2} = -4a^{2}(b^{2}c^{2} + b^{4} - a^{2}m^{2}c^{2} - a^{2}m^{2}b^{2})$ $c^{2} = a^{2}m^{2} - b^{2} \text{or} a^{2}m^{2} = b^{2} + c^{2}$ **	A1 (2)
(c)	Substitute (1, 4) into $y = mx + c$ to give $4 = m + c$ and Substitute $a = 5$ and $b = 4$ into $c^2 = a^2m^2 - b^2$ to give $c^2 = 25m^2 - 16$ Solve simultaneous equations to eliminate m or $c: (4-m)^2 = 25m^2 - 16$ To obtain $24m^2 + 8m - 32 = 0$ Solve to obtain $8(3m + 4)(m - 1) = 0m =$ or $m = 1$ or $-\frac{4}{3}$ Substitute to get $c = 3$ or $\frac{16}{3}$ Lines are $y = x + 3$ and $3y + 4x = 16$	B1 M1 A1 M1 A1 M1 A1
		[11]

Question Number	Scheme	Marks
Q7 (a)	If the lines meet, $-1+3\lambda = -4+3\mu$ and $2+4\lambda = 2\mu$	M1
	Solve to give $\lambda = 0$ ($\mu = 1$ but this need not be seen).	M1 A1
	Also $1 - \lambda = \alpha$ and so $\alpha = 1$.	B1 (4)
(b)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 4 \\ 0 & 3 & 2 \end{vmatrix} = -6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \text{ is perpendicular to both lines and hence to the plane}$	M1 A1
	The plane has equation r.n=a.n , which is $-6x + 2y - 3z = -14$,	M1
	i.e. $-6x + 2y - 3z + 14 = 0$.	A1 o.a.e. (4)
OR (b)	Alternative scheme	
	Use $(1, -1, 2)$ and $(\alpha, -4, 0)$ in equation $ax+by+cz+d=0$	M1
	And third point so three equations, and attempt to solve	M1
	Obtain $6x-2y+3z =$	A1
	(6x - 2y + 3z) - 14 = 0	A1 o.a.e. (4)
(c)	$(a_1 - a_2) = i - 3j - 2k$	M1
	Use formula $\frac{(\mathbf{a_1} - \mathbf{a_2}) \cdot \mathbf{n}}{ \mathbf{n} } = \frac{(\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \cdot (-6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})}{\sqrt{(36 + 4 + 9)}} = \left(\frac{-6}{7}\right)$	M1
	Distance is $\frac{6}{7}$	A1 (3) [11]

Question Number	Scheme	Marks	s
Q8 (a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -3\sin\theta, \ \frac{\mathrm{d}y}{\mathrm{d}\theta} = 5\cos\theta$	B1	
	so $S = 2\pi \int 5\sin\theta \sqrt{(-3\sin\theta)^2 + (5\cos\theta)^2} d\theta$	M1	
	$\therefore S = 2\pi \int 5\sin\theta \sqrt{9 - 9\cos^2\theta + 25\cos^2\theta} d\theta$	M1	
	Let $c = \cos \theta$, $\frac{dc}{d\theta} = -\sin \theta$, limits 0 and $\frac{\pi}{2}$ become 1 and 0	M1	
	So $S = k\pi \int_{0}^{\alpha} \sqrt{16c^2 + 9} dc$, where $k = 10$, and α is 1	A1, A1	(6)
(b)	Let $c = \frac{3}{4} \sinh u$. Then $\frac{dc}{du} = \frac{3}{4} \cosh u$	M1	
	$So S = k\pi \int_{?}^{?} \sqrt{9 \sinh^2 u + 9} \frac{3}{4} \cosh u du$	A1	
	$= k\pi \int_{2}^{2} \frac{9}{4} \cosh^{2} u du = k\pi \int_{2}^{2} \frac{9}{8} (\cosh 2u + 1) du$	M1	
	$= k\pi \left[\frac{9}{16}\sinh 2u + \frac{9}{8}u\right]_0^d$	A1	
	$=\frac{45\pi}{4}\left[\frac{20}{9} + \ln 3\right]$ i.e. $\frac{117}{9}$	B1	
	4 [9]		(5)
		[[11]

June 2009 6674 Further Pure Mathematics FP1 (legacy) Mark Scheme

	stion nber	Scheme	Marks	
Q1	(a) (b)	$x = -i \text{ is a root (Scored here or in (b))}$ Factor $(x+i)(x-i) = x^2 + 1$ $x^4 + 6x^3 + 26x^2 + 6x + 25 = (x^2 + 1)(x^2 + 6x + 25)$ $x = \frac{-6 \pm \sqrt{36 - 100}}{2}$ Solving quadratic: $x = -3 \pm 4i$		(4) (2) [6]
	(a) (b)	1B1 CAO, x = -i, maybe seen in (b) 2B1 x²+1 CAO 1M1 Getting the three term quadratic 1A1 CAO for correct quadratic 1M1 Solving a three term quadratic to x = complex, correct formula used 1A1 CAO		

Question Number	Scheme	Marks
Q2	$m^{2} + 6m + 10 = 0 m = \frac{-6 \pm \sqrt{36 - 40}}{2} = -3 \pm i$ $C.F. (x =) e^{-3t} (A\cos t + B\sin t)$ $P.I. x = ke^{-4t}$ $\frac{dx}{dt} = -4ke^{-4t} \frac{d^{2}x}{dt^{2}} = 16ke^{-4t}$ $16k - 24k + 10k = 1 k = \frac{1}{2}$ $x = e^{-3t} (A\cos t + B\sin t) + \frac{1}{2}e^{-4t}$ General solution:	1B1 1M1 1A1ft 2B1 2M1 3M1 2A1 3A1ft=3B1ft [8]
	1B1 CAO (may be implied) 1M1 Correct 'shape' e^{at} ($A\cos bt + B\sin bt$) accept alterative (single) variable here. No complex 1A1ft condone their variables 2B1 CAO 2M1 Attempt at both, accept ke^{-at} (a>0) derivatives here. 3M1 Linear in k, to k = 2A1 CAO 3A1ft = 3B1ft but must be x = f(t).	

Question Number	Scheme	Mark	(S
Q3 (a)	$r(r+2)(r+4) = r^3 + 6r^2 + 8r, \text{ so use } \sum r^3 + 6\sum r^2 + 8\sum r$ $= \frac{1}{4}n^2(n+1)^2 + 6\left(\frac{1}{6}n(n+1)(2n+1)\right) + 8\left(\frac{1}{2}n(n+1)\right)$	1M1 1A1	
	$= \frac{1}{4}n(n+1)\{n(n+1) + 4(2n+1) + 16\}$	2M1 2A	
(b)	$= \frac{1}{4}n(n+1)\left\{n^2 + 9n + 20\right\} = \frac{1}{4}n(n+1)(n+4)(n+5)$ $\sum_{21}^{30} = \sum_{1}^{30} -\sum_{1}^{20}$ (*)	3A1 1M1	(5)
	$= \frac{1}{4}(30 \times 31 \times 34 \times 35) - \frac{1}{4}(20 \times 21 \times 24 \times 25) = 213675$	1A1	(2) [7]
(a) (a)	Alternative (induction): $\frac{1}{4}k(k+1)(k+4)(k+5) + (k+1)(k+3)(k+5)$ $= \frac{1}{4}(k+1)(k+5)(k^2+4k+4k+12)$ $= \frac{1}{4}(k+1)(k+2)(k+5)(k+6)$ $= \frac{60}{4} = 15$ $= 181 \text{ cao}$ $= 2A1 \text{ cao}$ $= 2A1 \text{ cao}$ $= 2A1 \text{ cao}$ $= 2A1 \text{ correct substitution in correct expansion.}$ $= 2A1 \text{ correct quadratic factor seen}$ $= 2A1 \text{ a correct quadratic factor}$ $= 3A1 \text{ cso}$ $= 30 \text{ correct quadratic factor seen}$ $= 3A1 \text{ cso}$ $= 30 \text{ correct quadratic factor seen}$ $= 3A1 \text{ cso}$ $= 30 \text{ correct quadratic factor seen}$ $= 30 correc$		

Question Number	Scheme	Marks
Q4 (a) (b)	$z_{2} = \frac{z_{1}}{1 - i} = \frac{5 + 2pi}{1 - i} \times \frac{1 + i}{1 + i}$ $\frac{(5 - 2p) + i(5 + 2p)}{2} = \left(\frac{5 - 2p}{2}\right), + i\left(\frac{5 + 2p}{2}\right)$ $\frac{5 + 2p}{5 - 2p} = 4 \qquad 5 + 2p = 20 - 8p \qquad p = \frac{3}{2}$ $ z_{2} = \sqrt{1^{2} + 4^{2}} = \sqrt{17} = 4.12$ $\uparrow z_{1}$ $\downarrow z_{1}$ $\downarrow z_{2}$ $\downarrow z_{1}$	1 M1 1A1,2A1 (3) 1M1 1A1ft (2) 1M1 1A1 (2)
	For $\frac{z_1}{z_2}$ For z_1 and z_2 $(z_1 = 5 + 3i$ and $z_2 = 1 + 4i)$	1B1 2B1ft (2) [9]
(c)	Alternative: $5+2pi=(1-i)(a+bi) \text{and equate real and imaginary parts} \qquad M1$ $(a+b=5 \text{ and } b-a=2p)$ Alternative: $ z_2 = \frac{ z_1 }{\sqrt{2}} = \frac{\sqrt{25+(2p)^2}}{\sqrt{2}} \text{and substitute value for p.} M1$ $Q4 \text{ Notes}$ (a) $1M1 \text{A correct method leading to coordinate}$ $1A1 \text{cao}$ $2A1 \text{cao}$ $2A1 \text{cao}$ (b) $1M1 \text{linear equation in p, their Im/Re} = 4$ $1A1\text{ft from their (a)}$ (c) $1M1 \text{Pythagoras}$ $1A1 \text{cao (awrt 4.12)}$ (d) $1B1 \text{cao}$ $2B1\text{ft If points unlabelled withhold this mark, relative positions plausible}$	

Ques Num		Scheme	Mar	·ks
Q5	(a)	$f(0.8) = \sin 1.6 - \ln 2.4$ (= 0.1241)		
	(b)	$f(0.9) = \sin 1.8 - \ln 2.7 \qquad (= -0.0194)$ Values correct (to 1 s.f.). Change of sign \Rightarrow Root $f'(x) = 2\cos 2x, -\frac{1}{x}$	1M1 1A1 1B1, 2	(2) B1
		$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.9 - \frac{-0.0194}{-1.5655}, = 0.888$	1M1 1A	(5)
	(c)	$\frac{0.1241}{k} = \frac{0.0194}{0.1 - k}$ (where root is approx. 0.8 + k)	M1 1A1	lft
		$k = 0.1 - k$ (where root is approx. $0.8 + k$) $k = 0.086 \qquad \alpha \approx 0.886 \qquad \text{(Allow awrt)}$	2A1	(3) [10]
		Alternative for (c) $\frac{0.9 - \alpha}{0.0194} = \frac{\alpha - 0.8}{0.1241}$ M1 A1		
		$0.11169 - 0.1241\alpha = 0.0194\alpha - 0.01552$		
		$0.12721 = 0.1435 \alpha$ $\alpha \approx 0.886$ A1		
		Q5 Notes (a) 1M1 Both evaluated 1A1 cao including conclusion statement (b) 1B1 2 cos2x cao 2B1 -1/x cao 1M1 Substituting values 1A1 cao 3 dp rounded or truncated 2A1 cao 0.888 gets both A marks (c) 1M1 Accept sign errors here, accept f(0.8) and f(0.9) 1A1ft their values from (a), signs correct. 2A1 cao 0.886 gets both A marks		

Question Number	Scheme	Marks
Q6 (a)	Integrating factor $e^{\int \cot x dx} = e^{\ln(\sin x)} = \sin x$ $y \sin x = \int \sin^2 x dx$ $\frac{d}{dx} (y \sin x) = \sin^2 x$ $\int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} dx = \frac{x}{2} - \frac{\sin 2x}{4} (+C)$ $y = \frac{2x - \sin 2x + C}{4 \sin x}$ (or equiv.) $y = 1 \text{ at}$ $x = \frac{\pi}{2}$ $y = \frac{\frac{\pi}{2} - 1 + 4 - \pi}{4} = \frac{\sqrt{2}}{4} (3 - \frac{\pi}{2}) = \frac{(6 - \pi)\sqrt{2}}{8}$ At $x = \frac{\pi}{4}$, (*)	1M1 2M1 1A1 3M1 2A1 3A1 (6) 1M1 1A1 2M1 2A1 (4) [10]
(a)	Alternative (special case):	
(b)	Multiply by $\sin x$ and integrate 'by inspection' Achieve $y \sin x = \int \sin^2 x dx$ or $\frac{d}{dx}(y \sin x) = \sin^2 x$ Note that other C values are possible, $y = \frac{2x - \sin 2x}{4 \sin x} + \frac{C}{\sin x}$ Q6 Notes (a) 1M1 Integrating factor found, condone sign error 2M1 One side correct 1A1 cao both sides correct 3M1 'RHS' in a form that can be integrated 2A1 'RHS' integrated cao 3A1 cao to $y = $, general solution (b) 1M1 Substitute to find their C 1A1 their C cao 2M1 substitute to find y 2A1 cso	

Question Number	Scheme	Marks
Q7 (a)	Line, positive grad., intercepts $(0, 2)$, $(-2, 0)$ Curve, branch $x > 2$ Curve, branch $x < 2$	1B1 2B1 3B1
	Curve intercept $\left(0, \frac{1}{2}\right)$	4B1
4. >	Asymptotes $x = 2$ and $y = 0$	1M1 1A1(6)
(b)	$x + 2 = \frac{1}{x - 2} \qquad x^2 - 4 = 1 \qquad x = \sqrt{5}$ $x + 2 = \frac{1}{2 - x} \qquad 4 - x^2 = 1 \qquad x = \sqrt{3}$ $x < -\sqrt{3}, \qquad \sqrt{3} < x < \sqrt{5}$	1M1 1A1
	$x+2=\frac{1}{2-x}$ $4-x^2=1$ $x=\sqrt{3}$	2M1 2A1
	$x < -\sqrt{3}, \qquad \sqrt{3} < x < \sqrt{5}$	1B1ft, 2B1ft (6) [12]
	Special case (a) for $y = \left \frac{1}{x+2} \right $ allow 2B1 if both branches correct Q7 Notes (a) 1B1 cao intercepts clear 2B1 cao 3B1 cao 4B1 cao 1/2 indicated 1M1 One stated 1A1 both stated (b) 1M1 condone inequality here, seeking one critical value 1A1 finding 1 st critical value, exact, but ignore signs 2M1 condone inequality here, seeking second critical value 2A1 finding 2 nd critical value, exact, but ignore signs 1B1ft ft their values penalise \leq once only at first occurrence 2B1ft ft their values condone $x \neq 2$.	

Question Number	Scheme	Marks
Q8 (a)	$r\sin\theta = \sin\theta + \sin\theta\cos\theta$	
	$\frac{d(r\sin\theta)}{d\theta} = \cos\theta + \cos 2\theta = \cos\theta + \cos^2\theta - \sin^2\theta$	1M1 1A1
	$2\cos^2\theta + \cos\theta - 1 = 0 \implies \cos\theta = \frac{1}{2} \implies \theta = \frac{\pi}{3} r = \frac{3}{2} (*)$	2M1 2A1 (4)
(b)	$\frac{1}{2}\int r^2 d\theta = \frac{1}{2}\int (1+2\cos\theta+\cos^2\theta)d\theta$	1 M1
	$\int (1 + 2\cos\theta + \cos^2\theta) d\theta = \left[\theta + 2\sin\theta + \frac{\sin 2\theta}{4} + \frac{\theta}{2}\right]$	2M1 1A1
	$\left[\frac{3\theta}{2} + 2\sin\theta + \frac{\sin 2\theta}{4} \right]_0^{\pi/3} = \frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8} \qquad \left(= \frac{\pi}{2} + \frac{9\sqrt{3}}{8} \right)$	3M1
	$AH = r \sin \theta = \frac{3}{2} \times \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{4}, PH = 2 - r \cos \theta = 2 - \frac{3}{2} \times \frac{1}{2} = \frac{5}{4}$	1B1, 2B1
	Area of trapezium OAHP: $\frac{1}{2} \left(2 + \frac{5}{4} \right) \frac{3\sqrt{3}}{4} \qquad \left(= \frac{39\sqrt{3}}{32} \right)$	4M1
	Area of R: $\frac{39\sqrt{3}}{32} - \left(\frac{\pi}{4} + \frac{9\sqrt{3}}{16}\right) = \frac{21\sqrt{3}}{32} - \frac{\pi}{4}$	5M1 2A1 (9)
		[13]
	Q8 Notes (a) 1M1 Finding rsinθ 1A1 cao $\frac{d(r \sin \theta)}{d\theta} = 0$ 2M1 putting $\frac{d}{d\theta} = 0$ 2A1 cso (b) 1M1 $\frac{1}{2} \int r^2 d\theta$ in terms of θ , expanded. 2M1 integrating, at least 1 trig term correctly handled 1A1 cao 3M1 substituting correct limits 1B1 $\frac{3\sqrt{3}}{4}$ cao careful, may be on diagram 2B1 5/4 or $\frac{3}{4}$ cao careful, may be on diagram 4M1 Trapezium or $\left(\frac{1}{2} \times \frac{3}{4} \times \frac{3\sqrt{3}}{4}\right) + \left(\frac{5}{4} \times \frac{3\sqrt{3}}{4}\right) = \frac{9\sqrt{3}}{32} + \frac{15\sqrt{3}}{32} = \frac{39\sqrt{3}}{32}$ 5M1 Subtracting their integral and their trapezium 2A1 cao	

June 2009 6675 Further Pure Mathematics FP2 (legacy) Mark Scheme

Ques		Scheme	ı	Marks	6
Q1		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \times \operatorname{arsinh} 2x \times \frac{2}{\sqrt{4x^2 + 1}}$	M1	A1	
		At $x = \frac{1}{2}$, $\frac{dy}{dx} = \frac{4}{\sqrt{2}} \operatorname{arsinh} 1$	M1	A1ft	
		$=2\sqrt{2}\ln\left(\sqrt{2}+1\right)$	A1		(5)
					[5]
		Alternative			
		$\sinh y^{\frac{1}{2}} = 2x$			
		$\frac{1}{2}y^{-\frac{1}{2}}\cosh y^{\frac{1}{2}}\frac{dy}{dx} = 2$	M1	A1	
		$\sqrt{\left(1+\sinh^2 y^{\frac{1}{2}}\right)}\frac{\mathrm{d}y}{\mathrm{d}x} = 4y^{\frac{1}{2}}$			
		At $x = \frac{1}{2}$, $\sinh y^{\frac{1}{2}} = 1$			
		$\sqrt{(1+1)}\frac{\mathrm{d}y}{\mathrm{d}x} = 4 \operatorname{arsinh} 1$	M1		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{\sqrt{2}} \operatorname{arsinh} 1$	A1f	t	
		$=2\sqrt{2}\ln\left(\sqrt{2}+1\right)$	A1		(5)
Q2	(a)	$b^2 = a^2 \left(1 - e^2 \right) \implies 8 = a^2 \left(1 - \frac{1}{2} \right) \implies a = 4$	M1	A1	(2)
	(b)	At S, $x = ae = 2\sqrt{2}$; at D, $y = 2\sqrt{2}$ two coordinates (SDS'D' is a square)	B1		
		$A = 4 \times \frac{1}{2} \times 2\sqrt{2} \times 2\sqrt{2} = 16$	M1	A1	(3)
					[5]

	stion nber	Scheme	Mark	(S
Q3	(a)	$\int_{0}^{1} (1-x)^{n} \cosh x dx = \left[(1-x)^{n} \sinh x \right]_{0}^{1} + \int_{0}^{1} n (1-x)^{n-1} \sinh x dx$ $= \int_{0}^{1} n (1-x)^{n-1} \sinh x dx$ $= \left[n (1-x)^{n-1} \cosh x \right]_{0}^{1} + \int_{0}^{1} n (n-1) (1-x)^{n-2} \cosh x dx$ $= -n + n (n-1) \int_{0}^{1} (1-x)^{n-2} \cosh x dx$ $I_{n} = n (n-1) I_{n-2} - n \bigstar \qquad cso$ $I_{0} = \int_{0}^{1} \cosh x dx = \left[\sinh x \right]_{0}^{1} = \sinh 1 \left(= \frac{1}{2} (e - e^{-1}) \right)$ $I_{2} = 2I_{0} - 2$ $I_{4} = 12I_{2} - 4 = 24I_{0} - 28$ $= 12e - \frac{12}{e} - 28$	M1 A1 M1 A1 B1 M1 M1 A1	(5) (4) [9]
Q4	(a)	$\frac{dy}{dx} = 15\cosh x - 17\sinh x + 6$ $\frac{dy}{dx} = 0 \implies 15\left(\frac{e^x + e^{-x}}{2}\right) - 17\left(\frac{e^x - e^{-x}}{2}\right) + 6 = 0$ $e^{2x} - 6e^x - 16 = 0$ $(e^x - 8)(e^x + 2) = 0$ $x = 3\ln 2$ $\frac{d^2y}{dx^2} = 15\sinh x - 17\cosh x$ $= -e^x - 16e^{-x} < 0 \text{(for any real } x\text{)}$ $\implies \text{maximum}$ Accept equivalent arguments or a sketch	B1 M1 M1 A1 M1 A1 M1 A1	(6) (3) [9]

B1
M1 A1
M1 A1
M1 A1
M1
A1 (9)
[9]
M1 A1
M1 A1
M1
A1
M1 A1
M1 A1
M1
A1

Question Number	Scheme	Marks
Q6	$u = \cosh \theta \implies \frac{\mathrm{d}u}{\mathrm{d}\theta} = \sinh \theta$	B1
	$I = \int \frac{u+1}{\sinh^2 \theta (u-1)^2} \mathrm{d}u$	M1
	$= \int \frac{u+1}{(u^2-1)(u-1)^2} \mathrm{d}u$	M1
	$= \int \frac{1}{\left(u-1\right)^3} \mathrm{d}u$	A1
	$=-\frac{1}{2(u-1)^2}$	M1 A1
	At $\theta = \ln 4$, $u = \frac{4 + \frac{1}{4}}{2} = \frac{17}{8}$; at $\theta = \ln 2$, $u = \frac{2 + \frac{1}{2}}{2} = \frac{5}{4}$ both	M1 A1
	$\left[-\frac{1}{2(u-1)^2}\right]_{\frac{5}{4}}^{\frac{17}{8}} = 8 - \frac{32}{81} = \frac{616}{81}$	M1 A1 (10)
		[10]

	stion nber	Scheme	Mar	ks
Q7	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos x}{\sin x} \left(= \cot x \right)$	B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan \psi = \cot x$	M1	
		$ \tan \psi = \tan \left(\frac{\pi}{2} - x\right) \Rightarrow \psi = \frac{\pi}{2} - x * \text{cso} $	A1	(3)
	(b)	$s = \int \left(1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right)^{1/2} \mathrm{d}x = \int \left(1 + \cot^2 x\right)^{1/2} \mathrm{d}x$	M1	
		$=\int \csc x \mathrm{d}x$	A1	
		$= -\ln\left(\csc x + \cot x\right) \left(+C\right)$	A1	
		$=-\ln\left(\sec\psi+\tan\psi\right)\left(+C\right)$	M1	
		$\left(0, \frac{\pi}{4}\right) \implies 0 = -\ln\left(\sqrt{2} + 1\right) + C$	M1	
		$s = \ln\left(\frac{\sqrt{2+1}}{\sec\psi + \tan\psi}\right) * $ cso	A1	(6)
	(c)	$\frac{\mathrm{d}s}{\mathrm{d}\psi} = -\sec\psi$	M1	
		$\psi = \frac{\pi}{6} \implies \rho = \left \frac{\mathrm{d}s}{\mathrm{d}\psi} \right = \frac{2}{\sqrt{3}}$ awrt 1.15	M1 A1	(3)
				[12]
		Alternative to (c)		
		$\psi = \frac{\pi}{6} \Rightarrow x = \frac{\pi}{3}$		
		At $x = \frac{\pi}{3}$; $\frac{dy}{dx} = \cot x = \frac{1}{\sqrt{3}}$, $\frac{d^2y}{dx^2} = -\csc^2 x = -\frac{4}{3}$ both	M1	
		$\rho = \frac{\left \left(1 + \left(\frac{dy}{dx} \right)^2 \right)^{\frac{3}{2}}}{\frac{d^2 y}{dx^2}} \right = \frac{\left(1 + \frac{1}{3} \right)^{\frac{3}{2}}}{\frac{4}{3}} = \frac{2}{\sqrt{3}}$ awrt 1.15	M1 A1	(3)

Ques Num		Scheme		Mar	ks
Q8	(a)	$\frac{dx}{dp} = 2ap, \frac{dy}{dp} = 2a; \frac{dy}{dx} = \frac{1}{p}$ $y - 2ap = -p(x - ap^2)$		M1 A1	
		$y + px = 2ap + ap^3 *$	cso	A1	(4)
	(b)	Eliminating x between $y^2 = 4ax$ and $y + px = 2ap + ap^3$			
		$y + \frac{py^2}{4a} = 2ap + ap^3$ $py^2 + 4ay - 8a^2p - 4a^2p^3 = 0$		M1 A1	
		$(y-2ap)(py+4a+2ap^2)=0$ At Q , $y = -\frac{4a+2ap^2}{p} = -2a\left(\frac{2+p^2}{p}\right)$ *	cso	M1 A1 A1	(5)
	(c)	At Q , $x = a \left(\frac{2+p^2}{p}\right)^2$			
		$PQ^{2} = \left(ap^{2} - a\left(\frac{2+p^{2}}{p}\right)^{2}\right)^{2} + \left(2ap + 2a\left(\frac{2+p^{2}}{p}\right)\right)^{2}$		M1 A1	
		$=\frac{16a^{2}\left(p^{2}+1\right)^{3}}{p^{4}}$			
		$\frac{d}{dx}(PQ^2) = 16a^2 \left(\frac{6(p^2+1)^2 p^5 - (p^2+1)^3 \cdot 4p^3}{p^8} \right)$		M1	
		$\frac{\mathrm{d}}{\mathrm{d}x} \left(PQ^2 \right) = 0 \Rightarrow \frac{2 \left(p^2 + 1 \right)^2 \left(p^2 - 2 \right)}{p^5} = 0$			
		$p = (\pm) \sqrt{2}$		M1 A1	
		$PQ^{2} = \frac{16a^{2} \times 27}{4}$		M1	
		$PQ^{2} = \frac{16a^{2} \times 27}{4}$ $PQ_{\min} = 6\sqrt{3}a \clubsuit$	cso	A1	(7)
					[16]

June 2009 6676 Further Pure Mathematics FP3 (legacy) Mark Scheme

Question Number	Scheme	Mark	S
Q1 A	At $x = 0.1$, $y_1 = 0.1(0 \times 0 + 3) + 0 = 0.3$ $x = 0.2$, $y_2 = 0.1 (0.1 \times 0.3^2 + 3) + 0.3$ = 0.3009 + 0.3 = 0.6009 $x = 0.3$, $y_3 = 0.1 (0.2 \times 0.6009^2 + 3) + 0.6009$ = 0.307221616 + 0.6009 = 0.908(121616) Allow awrt 0.908	B1 M1 A1 M1 A1	[5]
Q2 (a) (b)	$\mathbf{b} \times \mathbf{c} = 0\mathbf{i} + 5\mathbf{j} + 5\mathbf{k}$ $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 5 \\ 5 \end{pmatrix} = 0 + 5 + 0 = 5$	M1 A1 A	(3)
(c) (d)	Area of triangle $OBC = \frac{1}{2} 5\mathbf{j} + 5\mathbf{k} = \frac{5}{2} \sqrt{2}$ oe Volume of tetrahedron = $\frac{1}{6} \times 5 = \frac{5}{6}$	M1 A1	(2) (2) (1) [8]

Number Q3 (a) ∴ (7	$\begin{vmatrix} 6 - \lambda & 1 & -1 \\ 0 & 7 - \lambda & 0 \\ 3 & -1 & 2 - \lambda \end{vmatrix} = 0$ $\therefore (6 - \lambda)((7 - \lambda)(2 - \lambda) - 0) - 1 \times 0 - 1(0 - 3(7 - \lambda)) = 0$		
	$\therefore (6-\lambda)(7-\lambda)(2-\lambda)+3(7-\lambda)=0$ $(7-\lambda)=0 \text{ verifies } \lambda=7 \text{ is an eigenvalue}$ They may show $\lambda=7$ in the determinant (e.g. $-1(0-0)-1(0-0)-1(0-0)$) $\therefore (7-\lambda)\left\{12-8\lambda+\lambda^2+3\right\}=0$ $\therefore (7-\lambda)\left\{\lambda^2-8\lambda+15\right\}=0$ $(NB :: \lambda^3-15\lambda^2+71\lambda-105=0)$	M1 M1	
	$(7-\lambda)(\lambda-5)(\lambda-3) = 0 \text{ and } 3 \text{ and } 5 \text{ are the other two eigenvalues}$ $\begin{pmatrix} 6 & 1 & -1 \\ 0 & 7 & 0 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 7 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 3 & -1 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	M1 A1 (!	5)
	-x + y - z = 0 $(0 = 0)$	M1 A1	1) 9]

Ques Num		Scheme	Mar	ks
Q4	(a)	$\frac{d^2y}{dx^2} + 2 \times 2 + 1 = 1, \text{ and so } \frac{d^2y}{dx^2} = -4 \text{ at } x = 0.$ $y''' + \{(1+y^2)y'' + 2y(y')(y')\} + y' = 2e^{2x}$ $y''' + (1+1)(-4) + 2 \times 1(2)(2) + 2 = 2, \text{ i.e. } y''' = 0$	B1 M1 {M1 B1 cso	A1} A1
	(b)	$y = 1, +2x(+)$ $-\frac{4x^2}{2} + \frac{0x^3}{6} + \frac{40x^4}{24}$ $(= -2x^2 + \frac{5x^4}{3})$	B1,B1 M1 A1	(4)
				[10]
Q5	(a)	$\cos 6\theta = \text{Re}[(\cos \theta + i \sin \theta)^{6}]$ $(\cos \theta + i \sin \theta)^{6} = c^{6} + 6c^{5}is + 15c^{4}i^{2}s^{2} + 20c^{3}i^{3}s^{3} + 15c^{2}i^{4}s^{4} + 6ci^{5}s^{5} + i^{6}s^{6}$ $\cos 6\theta = c^{6} - 15c^{4}s^{2} + 15c^{2}s^{4} - s^{6}$ $= c^{6} - 15c^{4}(1 - c^{2}) + 15c^{2}(1 - c^{2})^{2} - (1 - c^{2})^{3}$ $\cos 6\theta = c^{6} - 15c^{4} + 15c^{6} + 15c^{2}(1 - 2c^{2} + c^{4}) - (1 - 3c^{2} + 3c^{4} - c^{6})$ $\cos 6\theta = 32\cos^{6}\theta - 48\cos^{4}\theta + 18\cos^{2}\theta - 1 *$	M1 M1 A1 M1 A1	(5)
	(b)	$\cos 6\theta = \cos 2\theta \rightarrow 32\cos^{6}\theta - 48\cos^{4}\theta + 18\cos^{2}\theta - 1 = 2\cos^{2}\theta - 1$ $32\cos^{6}\theta - 48\cos^{4}\theta + 16\cos^{2}\theta = 0$ $16\cos^{2}\theta(2\cos^{4}\theta - 3\cos^{2}\theta + 1) = 0$ $(2\cos^{2}\theta - 1)(\cos^{2}\theta - 1) = 0$ $\therefore \cos^{2}\theta = 0, \frac{1}{2} \text{ or } 1 \text{ so } \cos\theta = 0, \pm \frac{1}{\sqrt{2}} \text{ or } \pm 1$ Uses arccos on at least 3 different values $\therefore \theta = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4} \text{ and } \pi$	M1 A1 - M1	(5)
		Decimals: Allow 0, 0.785, 1.57, 2.36, 3.14 (awrt) 3correct solutions A1, all correct A1	AI,AI	(6) [11]

	stion nber	Scheme	Marks
Q6	(a)	When $n = 1$ LHS = RHS = $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Result true for $n = 1$ Assume result true for $n = k$ i.e. $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^k = \begin{pmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{pmatrix}$ And multiply both sides by $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$	B1
		Then $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{k+1} = \begin{pmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ = $\begin{pmatrix} \cos k\theta \cos \theta - \sin k\theta \sin \theta & -\cos k\theta \sin \theta - \sin k\theta \cos \theta \\ \sin k\theta \cos \theta + \cos k\theta \sin \theta & -\sin k\theta \sin \theta + \cos k\theta \cos \theta \end{pmatrix}$	M1 M1
		i.e. $ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{k+1} = \begin{pmatrix} \cos(k+1)\theta & -\sin(k+1)\theta \\ \sin(k+1)\theta & \cos(k+1)\theta \end{pmatrix} $	A1
	(b)	Conclude, that by induction result is true for all positive integers When $n = 1$, $f(n) = 7 \times 5 - 3 = 32$, which is divisible by 16, so result true for $n = 1$	B1 cso (5) B1
		Consider $f(k+1) - f(k) = (4k+7)5^{k+1} - (4k+3)5^k$	M1
		$=5^{k}(20k+35-4k-3)$	M1
		$=5^k(16k+32)$, which is divisible by 16	A1
		If $f(k)$ is divisible by 16, then this implies $f(k+1)$ is also divisible by 16. Thus by induction $f(n)$ is divisible by 16 for all positive integers n .	B1 cso (5)

Question Number	Scheme	Marl	ks
Q7 (a)	If the lines meet, $-1+3\lambda = -4+3\mu$ and $2+4\lambda = 2\mu$	M1	
	Solve to give $\lambda = 0(\mu = 1)$	M1 A1	
	Also $1 - \lambda = \alpha$ and so $\alpha = 1$.	B1	(4)
(b)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 4 \\ 0 & 3 & 2 \end{vmatrix} = \begin{pmatrix} -6 \\ 2 \\ -3 \end{pmatrix}$	M1 A1	
	$\mathbf{r} \bullet \begin{pmatrix} -6\\2\\-3 \end{pmatrix} = \begin{pmatrix} -6\\2\\-3 \end{pmatrix} \bullet (e.g. \begin{pmatrix} 1\\-1\\2 \end{pmatrix}) = -14$	M1	
	Hence $-6x + 2y - 3z + 14 = 0$	A1	(4)
(c)	$\pm(\mathbf{a}_1 - \mathbf{a}_2) = \pm(\mathbf{i} - 3\mathbf{j} - 2\mathbf{k})$	M1	
	$\left \frac{(\mathbf{a_1} - \mathbf{a_2}) \bullet \mathbf{n}}{ \mathbf{n} } \right = \left \frac{(\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \bullet (-6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})}{ -6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} } \right = \left \frac{-6 - 6 + 6}{\sqrt{6^2 + 2^2 + 3^2}} \right $	M1	
	Distance is $\frac{6}{7}$	A1 cso	(3)
			[11]

Q8 (a) $\sqrt{\{(x-3)^2 + y^2\}} = 2\sqrt{\{x^2 + (y-4)^2\}} \text{ or } (x-3)^2 + y^2 = 4\{x^2 + (y-4)^2\} $ M1 A1 $ (x+1)^2 + (y-\frac{16}{3})^2 = \frac{100}{9} $ M1 A1 $ (x+1)^2 + (y-\frac{16}{3})^2 = \frac{100}{9} $ M1 A1,A1,A1 cso (6) $ w = \frac{12}{z} \rightarrow z = \frac{12}{w}, \text{ and so } \left \frac{12}{w} - 3 \right = 2\left \frac{12}{w} - 4i \right $ substituting for z M1 $ 3w-12 = 2 4iw-12 $ multiplication by $ w $ or equivalent M1 $ w-4 = \frac{8}{3} w+3i $ obtains the locus of Q in the required form A2 if completely correct deduct 1 for each error on their a, k or b (5)	Question Number	Scheme	Marks
[11]	Q8 (a)	$\sqrt{\{(x-3)^2 + y^2\}} = 2\sqrt{\{x^2 + (y-4)^2\}} \text{ or } (x-3)^2 + y^2 = 4\{x^2 + (y-4)^2\}$ $3x^2 + 3y^2 + 6x - 32y + 55 = 0$ $(x+1)^2 + (y - \frac{16}{3})^2 = \frac{100}{9}$ Centre is (-1, 16/3) and radius is 10/3 $w = \frac{12}{z} \rightarrow z = \frac{12}{w}, \text{ and so } \left \frac{12}{w} - 3 \right = 2\left \frac{12}{w} - 4i \right \qquad \text{substituting for } z$ $ 3w - 12 = 2 4iw - 12 \qquad \text{multiplication by } w \text{ or equivalent}$ $ w - 4 = \frac{8}{3} w + 3i \text{obtains the locus of Q in the required form}$	M1 A1 M1 A1,A1,A1 CSO (6) M1 M1 M1 (5)

June 2009 6677 Mechanics M1 Mark Scheme

Ques Num	stion nber	Scheme	Mar	·ks
Q1				
		$45 = 2u + \frac{1}{2}a2^2 \implies 45 = 2u + 2a$	M1 A1	
		$165 = 6u + \frac{1}{2}a6^2 \Rightarrow 165 = 6u + 18a$	M1 A1	
		eliminating either u or a	M1	
		u = 20 and $a = 2.5$	A1 A1	[7]
Q2	(a)	$\tan \theta = \frac{p}{2p} \Rightarrow \theta = 26.6^{\circ}$	M1 A1	(2)
	(b)	$\mathbf{R} = (\mathbf{i} - 3\mathbf{j}) + (p\mathbf{i} + 2p\mathbf{j}) = (1+p)\mathbf{i} + (-3+2p)\mathbf{j}$	M1 A1	
		R is parallel to $\mathbf{i} \implies (-3+2p) = 0$	DM1	
		$\Rightarrow p = \frac{3}{2}$	A1	(4) [6]
Q3	(a)	For A: $-\frac{7mu}{2} = 2m(v_A - 2u)$	M1 A1	
		$v_A = \frac{u}{4}$	A1	(3)
	(b)	For B: $\frac{7mu}{2} = m(v_B3u)$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
		OR CLM:	OR	
		$4mu - 3mu = 2m\frac{u}{4} + mv_B$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
				[6]

	stion nber	Scheme	Marks
Q4		$0.5g\sin\theta - F = 0.5a$	M1 A1 A1
		$F = \frac{1}{3}R$ seen	B1
		$R = 0.5g\cos\theta$	M1 A1
		Use of $\sin \theta = \frac{4}{5}$ or $\cos \theta = \frac{3}{5}$ or decimal equiv or decimal angle e.g 53.1° or 53°	B1
		$a = \frac{3g}{5}$ or 5.88 m s ⁻² or 5.9 m s ⁻²	DM1 A1 [9]
Q5		$F = P\cos 50^{\circ}$	M1 A1
		F = 0.2R seen or implied.	B1
		$P\sin 50^\circ + R = 15g$	M1 A1 A1
		Eliminating R ; Solving for P ; $P = 37 (2 SF)$	DM1;D M1; A1 [9]
Q6	(a)	For whole system: $1200 - 400 - 200 = 1000a$	M1 A1
		$a = 0.6 \text{ m s}^{-2}$	A1 (3)
	(b)	For trailer: $T - 200 = 200 \times 0.6$	M1 A1 ft
		T = 320 N	A1
		OR : For car: $1200 - 400 - T = 800 \times 0.6$	OR: M1 A1 ft
		T = 320 N	A1 (3)
	(c)	For trailer: $200 + 100 = 200f$ or $-200f$	M1 A1
		$f = 1.5 \text{ m s}^{-2} (-1.5)$	A1
		For car: $400 + F - 100 = 800f$ or $-800f$	M1 A2
		F = 900	A1 (7)
		(N.B. For both: $400 + 200 + F = 1000f$)	[13]

Que: Num	stion nber	Scheme	Mark	S
Q7	(a)	$M(Q)$, $50g(1.4 - x) + 20g \times 0.7 = T_p \times 1.4$	M1 A1	
		$T_P = 588 - 350x$ Printed answer	A1	(3)
	(b)	$M(P)$, $50gx + 20g \times 0.7 = T_Q \times 1.4$ or $R(\uparrow)$, $T_P + T_Q = 70g$	M1 A1	
		$T_Q = 98 + 350x$	A1	(3)
	(c)	Since $0 < x < 1.4$, $98 < T_P < 588$ and $98 < T_Q < 588$	M1 A1 A	(3)
	(d)	98 + 350x = 3 (588 - 350x)	M1	
		x = 1.19	DM1 A1	(3) [12]
Q8	(a)	$ \mathbf{v} = \sqrt{1.2^2 + (-0.9)^2} = 1.5 \text{ m s}^{-1}$	M1 A1	(2)
	(b)	$(\mathbf{r}_H =)100\mathbf{j} + t(1.2\mathbf{i} - 0.9\mathbf{j}) \text{ m}$	M1 A1	(2)
	(c)	$(\mathbf{r}_K =)9\mathbf{i} + 46\mathbf{j} + t(0.75\mathbf{i} + 1.8\mathbf{j}) \text{ m}$	M1 A1	
	(d)	$HK = \mathbf{r}_K - \mathbf{r}_H = (9 - 0.45t)\mathbf{i} + (2.7t - 54)\mathbf{j}$ m Printed Answer	M1 A1	(4)
	, ,	Meet when $\overrightarrow{HK} = 0$		
		(9-0.45t)=0 and $(2.7t-54)=0$	M1 A1	
		t = 20 from both equations	A1	
		$\mathbf{r}_K = \mathbf{r}_H = (24\mathbf{i} + 82\mathbf{j}) \text{ m}$	DM1 A1	CSO
				(5)
				[13]

June 2009 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Mark	s
Q1	I = $m\mathbf{v}$ - $m\mathbf{u}$ $5\mathbf{i} - 3\mathbf{j} = \frac{1}{4}\mathbf{v} - \frac{1}{4}(3\mathbf{i} + 7\mathbf{j})$ $\mathbf{v} = 23\mathbf{i} - 5\mathbf{j}$ $ \mathbf{v} = \sqrt{23^2 + 5^2} = 23.5$	M1A1 A1 M1A1	[5]
Q2 (a)	$\frac{dv}{dt} = 8 - 2t$ $8 - 2t = 0$ $\text{Max } v = 8 \times 4 - 4^2 = 16 \text{ (ms}^{-1})$ $\int 8t - t^2 dt = 4t^2 - \frac{1}{3}t^3 (+c)$ $(t=0, \text{ displacement} = 0 \Rightarrow c=0)$	M1 M1 M1 A1 M1 A1	(4)
	$4T^{2} - \frac{1}{3}T^{3} = 0$ $T^{2}(4 - \frac{T}{3}) = 0 \Rightarrow T = 0,12$ $T = 12 \text{ (seconds)}$	DM1 DM1 A1	(5) [9]
Q3 (a)	Constant v \Rightarrow driving force = resistance \Rightarrow F=120 (N) \Rightarrow P=120 x 10 = 1200W Resolving parallel to the slope, zero acceleration: $\frac{P}{v} = 120 + 300g \sin \theta (= 330)$ $\Rightarrow v = \frac{1200}{330} = 3.6 \text{ (ms}^{-1})$	M1 M1 M1A1A1 A1	(2) (4) [6]

Question Number Scheme		Scheme	Mark	(S
Q4	(a)	Taking moments about A: $3g \times 0.75 = \frac{T}{\sqrt{2}} \times 0.5$ $T = 3\sqrt{2}g \times \frac{7.5}{5} = \frac{9\sqrt{2}g}{2} (= 62.4N)$	M1A1A1	(4)
	(b)	$\leftarrow \pm H = \frac{T}{\sqrt{2}} (= \frac{9g}{2} \approx 44.1N)$	B1	
		$\uparrow \pm V + \frac{T}{\sqrt{2}} = 3g \ (\Rightarrow V = 3g - \frac{9g}{2} = \frac{-3g}{2} \approx -14.7 \text{ N})$	M1A1	
		$\Rightarrow R = \sqrt{81 + 9} \times \frac{g}{2} \approx 46.5(N)$	M1A1	
		at angle $tan^{-1}\frac{1}{3} = 18.4^{\circ}$ (0.322 radians) below the line of BA 161.6° (2.82 radians) below the line of AB	M1A1	
		(108.4° or 1.89 radians to upward vertical)		(7) [11]
Q5	(a)	Ratio of areas triangle:sign:rectangle = $1:5:6$ (1800:9000:10800) Centre of mass of the triangle is 20cm down from AD (seen or implied)	B1 B1	
		$\Rightarrow 6 \times 45 - 1 \times 20 = 5 \times \overline{y}$ $\overline{y} = 50cm$	M1A1 A1	(5)
	(b)	Distance of centre of mass from AB is 60cm	B1	(5)
		Required angle is $\tan^{-1} \frac{60}{50}$ (their values)	M1A1ft	
		$=50.2^{\circ} (0.876 \text{ rads})$	A1	(4) [9]

	stion nber	Scheme	Mar	rks
Q6	(a)	$\Rightarrow x = u \cos \alpha t = 10$ $\uparrow y = u \sin \alpha t - \frac{1}{2}gt^2 = 2$ $\Rightarrow t = \frac{10}{u \cos \alpha}$ $2 = u \sin \alpha \times \frac{10}{u \cos \alpha} - \frac{g}{2} \times \frac{100}{u^2 \cos^2 \alpha}$ $= 10 \tan \alpha - \frac{50g}{u^2 \cos^2 \alpha} \text{ (given answer)}$ $2 = 10 \times 1 - \frac{100g \times 2}{2u^2 \times 1}$ $u^2 = \frac{100g}{8}, u = \sqrt{\frac{100g}{8}} = 11.1 \text{ (m s}^{-1})$ $\frac{1}{2}mu^2 = m \times 9.8 \times 2 + \frac{1}{2}mv^2$	M1A1 M1A1 M1A1 A1 M1A1	(6)
		$v = 9.1 ms^{-1}$	A1	(6)
				[12]

Que:		Scheme	Marks	•
Q7	(a)	KE at $X = \frac{1}{2}mv^2 = \frac{1}{2} \times 2 \times 14^2$	B1	
		GPE at $Y =$ $mgd \sin \alpha \left(= 2 \times g \times d \times \frac{7}{25} \right)$	B1 B1	
		α Normal reaction $R = mg \cos \alpha$	M1	
		Friction = $\mu \times R = \frac{1}{8} \times 2g \times \frac{24}{25}$	M1A1	
		Work Energy: $\frac{1}{2}mv^2$ - $mgd\sin\alpha = \mu \times R \times d$ or equivalent		
		$196 = \frac{14gd}{25} + \frac{6gd}{25} = \frac{20gd}{25}$	A1	
		d = 25 m		(7)
	(b)	Work Energy		
		First time at <i>X</i> : $\frac{1}{2}mv^2 = \frac{1}{2}m14^2$		
		Work done = $\mu \times R \times 2d = \frac{1}{8} \times 2g \times \frac{24}{25} \times 2d$		
		Return to X: $\frac{1}{2}mv^2 = \frac{1}{2}m14^2 - \frac{1}{8} \times 2g \times \frac{24}{25} \times 50$	M1A1	
		$v = 8.9 \text{ ms}^{-1}$ (accept 8.85 ms ⁻¹)	DM1A1	
				(4)
		OR: Resolve parallel to XY to find the acceleration and use of $v^2 = u^2 + 2as$		
		$2a = 2g\sin\alpha - F_{\text{max}} = 2g \times \frac{7}{25} - \frac{6g}{25} = \frac{8g}{25}$	M1A1	
		$v^2 = (0+)2 \times a \times s = 8g \; ; v = 8.9$ (accept 8.85 ms ⁻¹)	DM1;A1	
			[11]

Questio Numbe		Scheme	Mar	rks
Q8 ((a)			
		$A \longrightarrow B \longrightarrow C \longrightarrow M$		
		$ \begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & & &$		
		AV .	M1 A1	
		Conservation of momentum: $4mu - 3mv = 3mkv$	IVIIAI	
		Impact law: $kv = \frac{3}{4}(u+v)$	M1 A1	
		Eliminate k: $4mu - 3mv = 3m \times \frac{3}{4}(u+v)$	DM1	
		u = 3v (Answer given)	A1	
				(6)
((b)	$kv = \frac{3}{4}(3v + v)$, $k = 3$	M1, A1	
			1011,711	(2)
((c)	Impact law: $(kv + 2v)e = v_C - v_B$ $(5ve = v_C - v_B)$	B1	()
		Conservation of momentum: $3 \times kv - 1 \times 2v = 3v_B + v_c$ $(7v = 3v_B + v_c)$	B1	
		Eliminate $v_C: v_B = \frac{v}{4}(7 - 5e) > 0$ hence no further collision with A.	M1 A1	(4)
				[12]

June 2009 6679 Mechanics M3 Mark Scheme

6 6 4.5 7.5	Resolving vertically: $2T \cos \theta = W$	M1A2, 1, 0
7.5	80 × 3 5	
w	Hooke's Law: $T = \frac{80 \times 3.5}{4}$ $W = 84$ N	M1A1 A1
EPE = $2 \times \frac{80 \times 3.5^2}{2 \times 4}$, = 245 (or awrt 245) (alternative $\frac{80 \times 7^2}{16}$ = 245)		M1A1ft, A1
Object Mass c of m above base Cone m $2h+3h$ Base $3m$ h Marker $4m$ d $m \times 5h +3m \times h = 4m \times d$		B1(ratio masses) B1(distances) M1A1ft
d=2h	$\frac{r}{d} = \frac{1}{12}$ $6r = h$	A1 M1A1ft A1 [8]
	(alternative $\frac{80 \times 7^2}{16} = 245$) Object Mass c of m above base Cone m $2h+3h$ Base $3m$ h Marker $4m$ d $m \times 5h + 3m \times h = 4m \times d$ $d = 2h$	(alternative $\frac{80 \times 7^2}{16} = 245$) Object Mass c of m above base Cone m $2h+3h$ Base $3m$ h Marker $4m$ d $m \times 5h + 3m \times h = 4m \times d$ $d = 2h$ $\frac{r}{d} = \frac{1}{12}$ $6r = h$

Quest Num		Scheme	Mark	(S
Q3	(a) (b)	$R \sin \theta = mx\omega^{2}$ $R \times \frac{x}{r} = mx \times \frac{3g}{2r}$ $R = \frac{3mg}{2}$ $R \cos \theta = mg$ $\frac{3mg}{2} \times \frac{d}{r} = mg$ $d = \frac{2}{3}r$	M1 A1 M1 A1 M1 A1 M1 A1	[8]
Q4	(a) (b)	Volume = $\int_{\frac{1}{4}}^{1} \pi y^{2} dx = \int_{\frac{1}{4}}^{1} \pi \frac{1}{x^{4}} dx$ = $\left[\pi \times \frac{-1}{3x^{3}}\right]_{\frac{1}{4}}^{1}$ = $\pi(\frac{-1}{3} + \frac{64}{3}) = 21\pi$ ** $21\pi\rho\bar{x} = \rho\int\pi y^{2}x dx = \rho\int\pi \frac{1}{x^{4}}x dx$ $21\pi\bar{x} = \pi\left[\frac{-1}{2x^{2}}\right]_{\frac{1}{4}}^{1}$ $\bar{x} = \frac{1}{21}(\frac{-1}{2} + \frac{16}{2}) = \frac{5}{14}$ or awrt 0.36 $\bar{y} = 0$ by symmetry	M1A1 A1ft A1 M1A1 A1ft A1ft B1	[9]

Question Number	Scheme	
Q5 (a)	Resolving: $T - mg \cos \theta$ Eliminate $T = mg \cos \theta$	$s\theta = \frac{mv^{2}}{l}$ v^{2} $s\theta + \frac{1}{l}(2mgl(\cos\theta - \frac{1}{4}))$ M1
	T = 3mg c	$\cos \theta - \frac{mg}{2}$ * A1
(b)		$v^2 = 2mgl(\frac{1}{2} - \frac{1}{4})$ $v^2 = \frac{gl}{2}$ M1
		otion under gravity: $\cos 30^{\circ})^{2} - 2gs$ M1
	$0 = \frac{gl}{2} \times \frac{3}{2}$	$\frac{1}{16} - 2gs \Rightarrow s = \frac{3l}{16}$
	Distance b	elow A = $\frac{l}{2} - \frac{3l}{16} = \frac{5l}{16}$ M1A1 [11]
Alternative for end of (b) using energy	leno \	$gl\cos 60 = \frac{1}{2}m(v\cos 60)^{2} - mgd$ M1A1 $\frac{gl}{4} \times \frac{1}{4} - gd$ M1 A1

Question Number	Scheme	Marks
Q6 (a)	At max v, driving force = resistance Driving force = $\frac{80}{v}$	B1 M1A1
	$\Rightarrow \frac{80}{20} = k \times 20^2 \Rightarrow k = \frac{1}{100}$ $F = \text{ma} \Rightarrow 100a = \frac{80}{v} - kv^2 (= \frac{8000 - v^3}{100v})$	M1
(b)	$\Rightarrow v \frac{dv}{dx} = \frac{8000 - v^3}{10000v}$ $\int_4^8 \frac{10000v^2}{8000 - v^3} dv = \int_0^D 1 dx$ $D = \left[-\frac{10000}{3} \ln 8000 - v^3 \right]^8$	A1 M1A1 A1
	$= \left(-\frac{10000}{3} \ln \frac{7488}{7936}\right) = 193.7 \approx 194 \text{m} \text{(accept 190)}$	M1 A1
(c)	$\frac{dv}{dt} = \frac{8000 - v^3}{10000v} \Rightarrow \int_0^T 1 dt = \int_4^8 \frac{10000v}{8000 - v^3} dv$ $\Rightarrow T \approx \frac{1}{2} \times 2 \times 10000 \times \left\{ \frac{4}{7936} + \frac{2 \times 6}{7784} + \frac{8}{7488} \right\}$ $\Rightarrow T (= 31.1409) \approx 31$	M1 A1 M1 A1
		[14]

Question Number	Scheme	Marks
Q7 (a)	mod=16 a=2 mod=12 a=1	
	A ────────────────────────────────────	
	⟨	
	Hooke's law: Equilibrium $\Rightarrow \frac{16(d-2)}{2} = \frac{12(4-d)}{1}$ $\Rightarrow d = 3.2$	M1A1A1
	so extensions are 1.2m and 0.8m.	A1 A1
(b)	If the particle is displaced distance x towards B then $-m\ddot{x} = \frac{16(1.2+x)}{2} - \frac{12(0.8-x)}{1} (=20x)$	M1A1ft A1ft
	$\Rightarrow \ddot{x} = -40x \text{ or } \ddot{x} = -\frac{20}{m} (\Rightarrow \text{SHM})$	A1
(c)	$T = \frac{2\pi}{\sqrt{40}}$ $a = \frac{\sqrt{10}}{\text{their }\omega}$	B1ft
	$a = \frac{\sqrt{10}}{}$	B1ft
	their ω $x = a \sin \omega t$ their a , their ω	M1
	$\frac{1}{4} = \frac{1}{2}\sin\sqrt{40t}$	A1
	$\sqrt{40}t = \frac{\pi}{6} (\Rightarrow t = \frac{\pi}{6\sqrt{40}})$	M1
	Proportion $\frac{4t}{T} = \frac{4\pi}{6\sqrt{40}} \times \frac{\sqrt{40}}{2\pi} = \frac{1}{3}$	M1A1
	$1 0\sqrt{40} 2\pi 3$	[16]

June 2009 6680 Mechanics M4 Mark Scheme

Question Number	Scheme	Marks
Q1	CLM along plane: $v\cos 30^{\circ} = u\cos 45^{\circ}$ $v = u\sqrt{\frac{2}{3}}$ Fraction of KE Lost = $\frac{\frac{1}{2}mu^{2} - \frac{1}{2}mv^{2}}{\frac{1}{2}mu^{2}} = \frac{\frac{1}{2}mu^{2} - \frac{1}{2}m\frac{2}{3}u^{2}}{\frac{1}{2}mu^{2}} = \frac{1}{3}$	M1 A1 A1 M1 M1 A1 [6]
C)2	$-mg - mkv^{2} = ma$ $-(g + kv^{2}) = v \frac{dv}{dx}$ $\pm \int_{0}^{x} dx = \int_{\sqrt{\frac{g}{k}}}^{\frac{1}{2}\sqrt{\frac{g}{k}}} \frac{-vdv}{(g + kv^{2})}$ $X = \frac{1}{2k} \left[\ln(g + kv^{2}) \right]_{\frac{1}{2}\sqrt{\frac{g}{k}}}^{\frac{g}{k}}$ $= \frac{1}{2k} \left(\ln 2g - \ln \frac{5g}{4} \right)$ $= \frac{1}{2k} \ln \frac{8}{5}$	M1 A1 M1 DM1 A1 (both previous) M1 A1 M1 A1 [9]

Questio Numbe		Marks
Q3 (£	ν 12 α 2000 m 20	M1
	Q $\cos \alpha = \frac{12}{20}$ Bearing is $180^{\circ} + \alpha = 233^{\circ}$ (nearest degree)	M1 A1 A1
(k	$PN = 2000\cos(135^{\circ} - \alpha) = 200\sqrt{2}$ m or decimal equivalent	(4) M1A1ft A1 (3)
(0	V 20 -12	B1
	Time to closest approach = $\frac{QN}{\sqrt{20^2 - 12^2}}$	M1
	$=\frac{2000\sin(135^{\circ}-\alpha)}{16}$	A1
	Distance moved by $Q = \text{their } t \ge 12$ = $1050\sqrt{2}$ m or decimal equivalent	DM1 A1 (5) [12]

Question Number	Scheme	Marks
Q4 (a)	$V = -mg2a\sin 2\theta - \frac{7}{20}mg(L - 4a\sin \theta)$	M1 B1 A1
	$= \frac{1}{5} mga(7\sin\theta - 10\sin 2\theta) - \frac{7}{20} mgL$	A1 (4)
(b)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \frac{1}{5} mga(7\cos\theta - 20\cos2\theta)$	(4) M1 A1
	$\frac{1}{5} mga(7\cos\theta - 20\cos 2\theta) = 0$	DM1
	$7\cos\theta - 20(2\cos^2\theta - 1) = 0$	DM1
	$40\cos^2\theta - 7\cos\theta - 20 = 0$	A1
	$(5\cos\theta - 4)(8\cos\theta + 5) = 0$	
	$\cos \theta = \frac{4}{5} \text{ or } (\cos \theta = -\frac{5}{8} \Rightarrow 2\theta > 180^{\circ})$	DM1 A1 DM1
		(8)
(c)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = \frac{1}{5} mga(-7\sin\theta + 40\sin2\theta)$	M1 A1
	$= \frac{1}{5} mga(-7\sin\theta + 80\sin\theta\cos\theta)$	
	When $\cos \theta = \frac{4}{5}$,	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = \frac{1}{5} mga(\frac{-21}{5} + 80x\frac{3}{5}x\frac{4}{5}) = \frac{171}{25} mga$	M1
	> 0 therefore stable	A1 cso (4)
		[16]

Questio Numbe		Scheme	Mar	ks
Q5 ((a)	CLM: $2(\mathbf{i} + 2\mathbf{j}) + -2\mathbf{i} = 2\mathbf{j} + \mathbf{v}$ $\mathbf{v} = 2\mathbf{j} \text{ m s}^{-1}$	M1 A1 A1	(2)
((b)	$\mathbf{I} = 2(\mathbf{j} - (\mathbf{i} + 2\mathbf{j}))$	M1 A1	(3)
		$= (-2\mathbf{i} - 2\mathbf{j}) \text{ Ns}$	A1	
		Since I acts along l.o.c.c., l.o.c.c is parallel to $\mathbf{i} + \mathbf{j}$	B1	
				(4)
((c)	Before A: $(i + 2j) \cdot \frac{1}{\sqrt{2}} (i + j) = \frac{3}{\sqrt{2}}$		
		B: $-2\mathbf{j} \cdot \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j}) = \frac{-2}{\sqrt{2}}$		
		After A : $\mathbf{j} \cdot \frac{1}{\sqrt{2}} (\mathbf{i} + \mathbf{j}) = \frac{1}{\sqrt{2}}$	M1 A3	
		B: $2\mathbf{j} \cdot \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j}) = \frac{2}{\sqrt{2}}$		
		NIL:		
		$e = \frac{\frac{2}{\sqrt{2}} - \frac{1}{\sqrt{2}}}{\frac{3}{\sqrt{2}} - \frac{-2}{\sqrt{2}}} = \frac{1}{5}$	DM1 A1	
				(6) [13]

Question Number	Scheme	М	arks
Q6 (a)	(\rightarrow) , $T = m\ddot{y}$ Hooke's Law:	M1	
	$T = \frac{2mn^2ax}{2a} = mn^2x$	B1	
	$x + y = \frac{1}{2}ft^{2}$ $\dot{x} + \dot{y} = ft$ $\ddot{x} + \ddot{y} = f$	B2	
	$x + y = f$ $so, (\rightarrow), mn^2 x = m\ddot{y} = m(f - \ddot{x})$	DM1	
	$\ddot{x} + n^2 x = f **$	A1	
(b)	C.F. : $x = A\cos nt + B\sin nt$	B1 B1	(6)
	$P.I. : x = \frac{f}{n^2}$		
	Gen solution: $x = A\cos nt + B\sin nt + \frac{f}{n^2}$	M1	
	$\dot{x} = -An\sin nt + Bn\cos nt \qquad \text{follow their PI}$	M1 A	\1ft
	$t = 0, x = 0 \Rightarrow A = -\frac{f}{n^2}$ $t = 0, \dot{x} = 0 \Rightarrow B = 0$	M1 <i>A</i>	\1
	$x = \frac{f}{n^2} (1 - \cos nt)$	A1	
(c)	$\dot{x} = 0 \Longrightarrow nt = \pi$	M1	(8)
	$x_{\text{max}} = \frac{f}{n^2}(11) = \frac{2f}{n^2}$	M1 A	1
(d)			(3)
(4)	$\dot{y} = ft - \dot{x}$	M1	
	$= f\frac{\pi}{n} - 0 = \frac{f\pi}{n}$	A1	
			(2) [19]

June 2009 6681 Mechanics M5 Mark Scheme

Question Number	Scheme	Marks
Q1	$\pm (8\mathbf{i} - 4\mathbf{j} + 8\mathbf{k})$	B1
	$((4\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}) + (8\mathbf{i} - 4\mathbf{j} + 7\mathbf{k})).(8\mathbf{i} - 4\mathbf{j} + 8\mathbf{k}) = \frac{1}{2}3v^2$	M1 A1 f.t.
	12 = v	A1
	$\mathbf{v} = \frac{12}{\sqrt{8^2 + (-4)^2 + 8^2}} (8\mathbf{i} - 4\mathbf{j} + 8\mathbf{k})$	M1
	$\mathbf{v} = (8\mathbf{i} - 4\mathbf{j} + 8\mathbf{k}) \mathrm{ms}^{-1}$	DM1 A1
		[7]
Q2	C.F. is $\mathbf{r} = \mathbf{A}\cos 2t + \mathbf{B}\sin 2t$	B1
	P.I. is $\mathbf{r} = \mathbf{p}e^{2t}$	B1
	$\dot{\mathbf{r}} = 2\mathbf{p}e^{2t}$ $\ddot{\mathbf{r}} = 4\mathbf{p}e^{2t}$	B1 ft
	$4\mathbf{p}e^{2t} + 4\mathbf{p}e^{2t} = \mathbf{j}e^{2t}$	M1
	so, (PI is) $\mathbf{r} = \frac{1}{8} \mathbf{j} e^{2t}$	A1
	GS is $\mathbf{r} = \mathbf{A}\cos 2t + \mathbf{B}\sin 2t + \frac{1}{8}\mathbf{j}e^{2t}$	A1 ft
	$t = 0$, $\mathbf{r} = \mathbf{i} + \mathbf{j} \Rightarrow \mathbf{i} + \mathbf{j} = \mathbf{A} + \frac{1}{8}\mathbf{j} \Rightarrow \mathbf{i} + \frac{7}{8}\mathbf{j} = \mathbf{A}$	DM1 A1
	$\dot{\mathbf{r}} = -2\mathbf{A}\sin 2t + 2\mathbf{B}\cos 2t + \frac{1}{4}\mathbf{j}e^{2t}$	M1A1
	$t = 0$, $\dot{\mathbf{r}} = 2\mathbf{i} \Rightarrow 2\mathbf{i} = 2\mathbf{B} + \frac{1}{4}\mathbf{j} \Rightarrow \mathbf{i} - \frac{1}{8}\mathbf{j} = \mathbf{B}$	A4
	$\mathbf{r} = (\mathbf{i} + \frac{7}{8}\mathbf{j})\cos 2t + (\mathbf{i} - \frac{1}{8}\mathbf{j})\sin 2t + \frac{1}{8}\mathbf{j}e^{2t}$	A1 [11]

Quest Num		Scheme	Mark	s
Q3	(a)	$mv = (m + \delta m)(v + \delta v) - (-\delta m)(c - v)$ $mv = mv + m\delta v + v\delta m + c\delta m - v\delta m$ $-m\delta v = c\delta m$	M1 A2	
		$\frac{\mathrm{d}v}{\mathrm{d}m} = -\frac{c}{m} *$	DM1 A1	(5)
	(b)			
		$\frac{\mathrm{d}m}{\mathrm{d}t} = -m_0 k$	B1	
		$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}m} \times \frac{\mathrm{d}m}{\mathrm{d}t}$ $= -\frac{c}{m} \times -m_0 k$	M1	
		$=\frac{cm_0k}{m_0(1-kt)}$	DM1	
		$=\frac{ck}{(1-kt)}$	A1	(4)
				[9]

Question Number	Scheme	Ma	arks
Q4 (a)			
	$\delta m = \frac{2Mx\delta x}{a^2}$	M1 A1	
	$\delta I = \frac{1}{3} \frac{2Mx \delta x}{a^2} (2x)^2$	M1 A1	
	$I = \int_0^a \frac{8Mx^3 dx}{3a^2}$	DM1	
	$=\frac{8M}{3a^2}\left[\frac{x^4}{4}\right]_0^a$		
	$=\frac{2}{3}Ma^2 *$	A1	
			(6)
(b)			
	$J.2a = \frac{2}{3}Ma^2\omega$	M1 A	\1
	$\frac{1}{2}\frac{2}{3}Ma^2\omega^2 = Mg\frac{2a}{3}(1+\cos 60^\circ)$	M1 A	2
	solving for J	DM1	
	$J = M\sqrt{\frac{ag}{3}}$	A1	(7)
			[13]

Question Number	Scheme	Mar	ks
Q5 (a)	$(2\mathbf{i} + \mathbf{j}) + (-2\mathbf{j} - \mathbf{k}) + \mathbf{F}_3 = 0$ $\mathbf{F}_3 = -2\mathbf{i} + \mathbf{j} + \mathbf{k}$ $ \mathbf{F}_3 = \sqrt{(-2)^2 + 1^2 + 1^2} = \sqrt{6} \text{ N}$	M1 A1 M1 A1	
(b)	$ \mathbf{r}_3 = \sqrt{(-2)^2 + 1^2 + 1^2} = \sqrt{6} \text{ N}$ $(3\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (2\mathbf{i} + \mathbf{j}) + (\mathbf{i} - 2\mathbf{j}) \times (-2\mathbf{j} - \mathbf{k}) + (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} + \mathbf{k})$	M1	(4)
	$(-\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + (2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) + ((y - z)\mathbf{i} + (-2z - x)\mathbf{j} + (x + 2y)\mathbf{k})$ $y - z = -1, -x - 2z = -3, x + 2y = 1$	A3 DM1 DM1	
(c)	x = 1, $y = 0$, $z = 1$ is a solution so, $\mathbf{r} = (\mathbf{i} + \mathbf{k}) + \lambda(-2\mathbf{i} + \mathbf{j} + \mathbf{k})$ is a vector equn of line of action of \mathbf{F}_3	M1 A1	(8)
	$(3\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (2\mathbf{i} + \mathbf{j}) + (\mathbf{i} - 2\mathbf{j}) \times (-2\mathbf{j} - \mathbf{k}) = \mathbf{G}$ $(-\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + (2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = (\mathbf{i} + 3\mathbf{j} - \mathbf{k}) = \mathbf{G}$	M1 A1	(4)
	$ \mathbf{G} = \sqrt{1^2 + 3^2 + (-1)^2} = \sqrt{11} \text{ N m}$	M1 A1	(4) [16]

Question Number	Scheme	Mark	S
Q6 (a)	$\frac{1}{3}2m(4a)^{2} + \frac{1}{12}4ma^{2} + 4m(4a)^{2}$ $= \frac{32}{3}ma^{2} + \frac{1}{3}ma^{2} + 64ma^{2}$ $= 75ma^{2} *$	B1 M1 A	A1 (4)
	$\frac{1}{2}75ma^{2}\omega^{2} = 2mg2a(\cos\theta - \cos\alpha) + 4mg4a(\cos\theta - \cos\alpha)$ $a\omega^{2} = \frac{8}{15}g(\cos\theta - \frac{24}{25}) = \frac{8}{375}g(25\cos\theta - 24)$	M1 A2 A1	
	$X - 6mg\cos\theta = 2m2a\omega^{2} + 4m4a\omega^{2} = 20ma\omega^{2}$ $X = 6mg\cos\theta + 20m\frac{8}{375}g(25\cos\theta - 24)$ $= \frac{50mg\cos\theta}{3} - \frac{256mg}{25}$	M1 A2 D M1 A1	(9)
(c)	$-2mg2a\sin\theta - 4mg4a\sin\theta = 75ma^2\ddot{\theta}$	M1 A1	
	$\ddot{\theta} = -\frac{4g}{15a}\sin\theta$ 4σ	A1	
	$\approx -\frac{4g}{15a}\theta$, SHM	M1	
	$Time = \frac{1}{4} 2\pi \sqrt{\frac{15a}{4g}}$	M1	
	$=\frac{\pi}{4}\sqrt{\frac{15a}{g}}$	A1	(6)
			[19]

June 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Mark	S
Q1 (a)	$(S_{pp}=) 38125 - \frac{445^2}{10}$	M1	
	= 18322.5 awrt 18300	A1	
	$(S_{pt} =) 26830 - \frac{445 \times 240}{10}$		
	= 16150 awrt 16200	A1	(3)
(b)	$r = \frac{"16150"}{\sqrt{"18322.5" \times 21760}}$ Using their values for method	M1	
	= 0.8088 awrt 0.809	A1	(2)
(c)	As the temperature increases the pressure increases.	B1	(1) [6]
Notes			[-1
	1(a) M1 for seeing a correct expression $38125 - \frac{445^2}{10}$ or $26830 - \frac{445 \times 240}{10}$		
	If no working seen, at least one answer must be exact to score M1 by implication. 1(b) Square root and their values with 21760 all in the right places required for method. Anything which rounds to (awrt) 0.809 for A1.		
	1(c) Require a correct statement in context using <u>temperature/heat</u> and <u>pressure</u> for B1.		
	Don't allow " as t increases p increases". Don't allow proportionality. Positive correlation only is PO since there is no interpretation		
	Positive correlation only is B0 since there is no interpretation.		

Question Number	Scheme	Mar	ks
Q2 (a)	Correct tree All labels Probabilities on correct branches $ \frac{1}{6} = \frac{1}{6} = \frac{1}{6} = \frac{1}{10} = \frac{1}{10$	B1 B1	(0)
(b)(i)	$\frac{1}{3} \times \frac{1}{10} = \frac{1}{30}$ or equivalent	M1 A1	(3)
(ii)	$CNL + BNL + FNL = \frac{1}{2} \times \frac{4}{5} + \frac{1}{6} \times \frac{3}{5} + \frac{1}{3} \times \frac{9}{10}$	M1	(2)
	$=\frac{4}{5}$ or equivalent	A1	(2)
(c)	$P(F'/L) = \frac{P(F' \cap L)}{P(L)}$ Attempt correct conditional probability but see notes	M1	()
	$= \frac{\frac{1}{6} \times \frac{2}{5} + \frac{1}{2} \times \frac{1}{5}}{1 - (ii)}$ numerator denominator	$\frac{A1}{A1ft}$	
	$= \frac{\frac{5}{30}}{\frac{1}{5}} = \frac{5}{6} \text{or equivalent} $ cao	A1	(4) [11]
Notes	Exact decimal equivalents required throughout if fractions not used e.g. 2(b)(i) 0.03 Correct path through their tree given in their probabilities award Ms 2(a) All branches required for first B1. Labels can be words rather than symbols for second B1. Probabilities from question enough for third B1 i.e. bracketed probabilities not required. Probabilities and labels swapped i.e. labels on branches and probabilities at end can be awarded the marks if correct. 2(b)(i) Correct answer only award both marks. 2(b)(ii) At least one correct path identified and attempt at adding all three multiplied pairs award M1 2(c) Require probability on numerator and division by probability for M1.Require numerator correct for their tree for M1. Correct formula seen and used, accept denominator as attempt and award M1 No formula, denominator must be correct for their tree or 1-(ii) for M1 1/30 on numerator only is M0, P(L/F') is M0.		

Question Number		Scheme	Marks
Q3	(a)	1(cm) cao	B1
	(b)	10 cm ² represents 15 10/15 cm ² represents 1 or 1cm ² represents 1.5	
		Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $x \frac{2}{3}$ or $\div 1.5$ height = 6(cm)	M1 A1
			[3]
Note	es	If 3(a) and 3(b) incorrect, but their (a) x their (b)=6 then award B0M1A0 3(b) Alternative method: f/cw=15/6=2.5 represented by 5 so factor x2 award M1 So f/cw=9/3=3 represented by 3x2=6. Award A1.	

Question Number	Scheme	Mark	s
Q4 (a)	$Q_2 = 17 + \left(\frac{60 - 58}{29}\right) \times 2$	M1	
	= 17.1 (17.2 if use 60.5) awrt 17.1 (or17.2)	A1	(2)
(b)	$\sum fx = 2055.5 \qquad \sum fx^2 = 36500.25 \qquad \text{Exact answers can be seen below or implied}$	B1 B1	(=)
	by correct answers. Evidence of attempt to use midpoints with at least one correct	M1	
	Mean = 17.129 awrt 17.1	B1	
	$\sigma = \sqrt{\frac{36500.25}{120} - \left(\frac{2055.5}{120}\right)^2}$	M1	
	= 3.28 (s=3.294) awrt 3.3	A1	(6)
(c)	$\frac{3(17.129 - 17.1379)}{3.28} = -0.00802$ Accept 0 or awrt 0.0	M1 A1	
	No skew/ slight skew	B1	(3)
(d)	The skewness is very small. Possible.	B1 B1de	p (2) [13]
Notes	4(a) Statement of $17 + \frac{\text{freq into class}}{\text{class freq}} \times \text{cw}$ and attempt to sub or $\frac{m-17}{19-17} = \frac{60(.5)-58}{87-58} \text{ or equivalent award M1}$ cw=2 or 3 required for M1. 17.2 from cw=3 award A0. 4(b) Correct $\sum fx$ and $\sum fx^2$ can be seen in working for both B1s Midpoints seen in table and used in calculation award M1 Require complete correct formula including use of square root and attempt to sub for M1. No formula stated then numbers as above or follow from (b) for M1 $(\sum fx)^2, \sum (fx)^2 or \sum f^2 x$ used instead of $\sum fx^2$ in sd award M0 Correct answers only with no working award $2/2$ and $6/6$ 4(c) Sub in their values into given formula for M1 4(d) No skew / slight skew / 'Distribution is almost symmetrical' / 'Mean approximately equal to median' or equivalent award first B1. Don't award second B1 if this is not the case. Second statement should imply 'Greg's suggestion that a normal distribution is suitable is possible' for second B1 dep. If B0 awarded for comment in (c) and (d) incorrect, allow follow through from the comment in (c).		

Ques Numl		Scheme	Marks
Q5	(a)	$b = \frac{59.99}{33.381}$	M1
		= 1.79713 1.8 or awrt 1.80	A1
		$a = 32.7 - 1.79713 \times 51.83$ = -60.44525 awrt -60 w = -60.445251 + 1.79713l l and w required and awrt 2sf	M1 A1 A1ft (5
	(b)	$w = -60.445251 + 1.79713 \times 60$ = 47.3825 In range 47.3 – 47.6 inclusive	M1 A1
	(c)	It is extrapolating so (may be) unreliable.	(2 B1, B1dep
			(2 [9
Note	S	5(a) Special case $b = \frac{59.99}{120.1} = 0.4995 \text{ M0A0}$ $a = 32.7 - 0.4995 \times 51.83 \text{ M1A1}$ $w = 6.8 + 0.50l \text{ at least 2 sf required for A1}$ 5(b) Substitute into their answer for (a) for M1 5(c) 'Outside the range on the table' or equivalent award first B1	

Question Number	Scheme	Mark	(S
Q6 (a)	$ \begin{array}{c ccccc} 0 & 1 & 2 & 3 \\ \hline 3a & 2a & a & b \end{array} $	B1	(1)
(b)	3a + 2a + a + b = 1 or equivalent, using Sum of probabilities =1 or equivalent, using E(X)=1.6	M1 M1	
	14a = 1.4 $a = 0.1$ $b = 0.4$ Attempt to solve cao	M1dep B1 B1	(5)
(c)	P(0.5 < x < 3) = P(1) + P(2) 3a or their $2a$ +their $a= 0.2 + 0.1$	M1	(5)
	= 0.3 Require $0 < 3a < 1$ to award follow through	A1 ft	(2)
(d)	E(3X-2) = 3E(X) - 2 = 3 × 1.6 - 2 = 2.8 cao	M1 A1	,
(e)	$E(X^{2}) = 1 \times 0.2 + 4 \times 0.1 + 9 \times 0.4 (= 4.2)$ $Var(X) = "4.2" - 1.6^{2}$	M1 M1	(2)
(f)	= 1.64	A1 M1	(3)
(.,	= 14.76 awrt 14.8	A1	(2) [15]
Notes	6(a) Condone a clearly stated in text but not put in table. 6(b) Must be attempting to solve 2 different equations so third M dependent upon first two Ms being awarded. Correct answers seen with no working B1B1 only, $2/5$ Correctly verified values can be awarded M1 for correctly verifying sum of probabilities =1, M1 for using $E(X)$ =1.6 M0 as no attempt to solve and B1B1 if answers correct. 6(d) 2.8 only award M1A1 6(e) Award first M for at least two non-zero terms correct. Allow first M for correct expression with a and b e.g. $E(X^2) = 6a + 9b$ Given answer so award final A1 for correct solution. 6(f) 14.76 only award M1A1		- 1

Question Number	Scheme	Marl	ks
Q7(a) (i)	$P(A \cup B) = a + b $ cao	B1	
(ii)	$P(A \cup B) = a + b - ab$ or equivalent	B1	(2)
(b)	$P(R \cup Q) = 0.15 + 0.35$ = 0.5	B1	(1)
(c)	$P(R \cap Q) = P(R Q) \times P(Q)$ = 0.1 \times 0.35	M1	
	= 0.035 0.035	A1	
			(2)
(d)	$P(R \cup Q) = P(R) + P(Q) - P(R \cap Q) OR P(R) = P(R \cap Q') + P(R \cap Q)$ $= 0.15 + their (c)$	M1	
	0.5 = P(R) + 0.35 - 0.035 P(R) = 0.185 = 0.15 + 0.035 = 0.185 = 0.185	A1	(2) [7]
Notes	7(a) (i) Accept $a + b - 0$ for B1 Special Case If answers to (i) and (ii) are (i) $P(A)+P(B)$ and (ii) $P(A)+P(B)-P(A)P(B)$ award B0B1 7(a)(i) and (ii) answers must be clearly labelled or in correct order for marks to be awarded.		[,]

Question Number	Scheme	M	larks
Q8 (a)	Let the random variable <i>X</i> be the lifetime in hours of bulb $P(X < 830) = P(Z < \frac{\pm (830 - 850)}{50})$ Standardising with 850 and 50	M1	
	= $P(Z < -0.4)$ = 1 - $P(Z < 0.4)$ Using 1-(probability>0.5) = 1 - 0.6554 = 0.3446 or 0.344578 by calculator awrt 0.345	M1 A1	
(b)	0.3446×500 Their (a) x 500 = 172.3 Accept 172.3 or 172 or 173	M1 A1	(3)
(c)	Standardise with 860 and σ and equate to z value $\frac{\pm (818 - 860)}{\sigma} = z$ value $\frac{818 - 860}{\sigma} = -0.84(16)$ or $\frac{860 - 818}{\sigma} = 0.84(16)$ or $\frac{902 - 860}{\sigma} = 0.84(16)$ or equiv.	M1 A1	
	$\pm 0.8416(2)$ $\sigma = 49.9$ 50 or awrt 49.9	B1 A1	
(d)	Company <i>Y</i> as the <u>mean</u> is greater for <i>Y</i> . They have (approximately) the same <u>standard deviation</u> or <u>sd</u>	B1 B1	(4)
			[11]
Notes	8(a) If 1-z used e.g. 1-0.4=0.6 then award second M0 8(c) M1 can be implied by correct line 2 A1 for completely correct statement or equivalent. Award B1 if 0.8416(2) seen Do not award final A1 if any errors in solution e.g. negative sign lost. 8(d) Must use statistical terms as underlined.		

June 2009 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mar	ks
Q1 (a)	$[X \sim B(30, 0.15)]$		
	$P(X \le 6)$, = 0.8474 awrt 0.847	M1, A1	(2)
(b)	$Y \sim B(60, 0.15) \approx Po(9)$ for using Po(9)	B1	
	$P(Y \le 12), = 0.8758$ awrt 0.876	M1, A1	(3)
	[N.B. normal approximation gives 0.897, exact binomial gives 0.894]		[5]
(a)	M1 for a correct probability statement $P(X \le 6)$ or $P(X < 7)$ or $P(X = 0) + P(X = 1) + P(X = 2) + P(X = 4) + P(X = 5) + P(X = 6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74% B1 may be implied by using Po(9). Common incorrect answer which implies this is 0.9261 M1 for a correct probability statement $P(X \le 12)$ or $P(X < 13)$ or $P(X = 0) + P(X = 1) + + P(X = 12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution. Condone $P(X \le 13) = 0.8758$ for B1 M1 A1 Correct answer gets B1 M1 A1 Use of normal or exact binomial get B0 M0 A0		

Question Number	Scheme		S
Q2	H_0 : $\lambda = 2.5$ (or $\lambda = 5$) H_1 : $\lambda < 2.5$ (or $\lambda < 5$) λ or μ	B1B1	
	$X \sim \text{Po}(5)$	M1	
	$P(X \le 1) = 0.0404$ or $CR \ X \le 1$	A1	
	[0.0404 $<$ 0.05] this is significant or reject H_0 or it is in the critical region	M1	
	There is evidence of a <u>decrease</u> in the (mean) <u>number/rate</u> of <u>deformed blood cells</u>	A1	(6) [6]
	1st B1 for H ₀ must use lambda or mu; 5 or 2.5. 2nd B1 for H ₁ must use lambda or mu; 5 or 2.5. 1st M1 for use of Po(5) may be implied by probability(must be used not just seen) eg. P (X = 1) = 0.0404 would score M1 A0 1st A1 for 0.0404 seen or correct CR 2nd M1 for a correct statement (this may be contextual) comparing their probability and 0.05 (or comparing 1 with their critical region). Do not allow conflicting statements. 2nd A1 is not a follow through. Need the word decrease, number or rate and deformed blood cells for contextual mark. If they have used ≠ in H ₁ they could get B1 B0 M1 A1 M1A0 mark as above except they gain the 1st A1 for P(X ≤ 1) = 0.0404 or CR X ≤ 0 2nd M1 for a correct statement (this may be contextual) comparing their probability and 0.025 (or comparing 1 with their critical region) They may compare with 0.95 (one tail method) or 0.975 (one tail method) Probability is 0.9596.		

Quest Numb		Scheme	М	arks
Q3	(a)	A statistic is a function of X_1, X_2, X_n	B1	
		that does not contain any unknown parameters	B1	(2)
	(b)	The <u>probability</u> distribution of Y or the distribution of all possible values of Y (o.e.)	B1	(1)
	(c)	Identify (ii) as not a statistic	B1	
		Since it contains unknown parameters μ and σ .	dB1	(2)
				[5]
	(a)	Examples of other acceptable wording:		
		B1 e.g. is a function of the sample or the data $/$ is a quantity calculated from the sample or the data $/$ is a random variable calculated from the sample or the data		
		B1 e.g. does not contain any unknown parameters/quantities		
		contains only known parameters/quantities only contains values of the sample		
		Y is a function of X_1, X_2, X_n that does not contain any unknown parameters B1B1		
		is a function of the values of a sample with no unknowns B1B1		
		is a function of the sample values B1B0 is a function of all the data values B1B0		
		A random variable calculated from the sample B1B0		
		A random variable consisting of any function B0B0		
		A function of a value of the sample B1B0		
		A function of the sample which contains no other values/ parameters B1B0		
	(b)	Examples of other acceptable wording		
		All possible values of the statistic together with their associated probabilities		
	(c)			
		1 st B1 for selecting only (ii)		
		2 nd B1 for a reason. This is dependent upon the first B1. Need to mention at least one		
		of mu (mean) or sigma (standard deviation or variance) or unknown parameters. Examples		
		since it contains mu B1		
		since it contains sigma B1		
		since it contains unknown parameters/quantities B1		
		since it contains unknowns B0		
			<u> </u>	

Question Number	Scheme	Mar	ks
Q4 (a)	$X \sim B(20, 0.3)$ $P(X \le 2) = 0.0355$ $P(X \le 9) = 0.9520 \text{so} P(X \ge 10) = 0.0480$ Therefore the critical region is $\{X \le 2\} \cup \{X \ge 10\}$	M1 A1 A1 A1A1	(5)
(b)	0.0355 + 0.0480 = 0.0835 awrt (0.083 or 0.084)	B1	(1)
(c)	11 is in the critical region there is evidence of a <u>change/ increase</u> in the <u>proportion/number</u> of <u>customers buying single tins</u>	B1ft B1ft	(2)
(a)	M1 for B(20,0.3) seen or used 1^{st} A1 for 0.0355 2^{nd} A1 for 0.048 3^{rd} A1 for $(X) \le 2$ or $(X) < 3$ or $[0,2]$ They get A0 if they write $P(X \le 2/X < 3)$ 4^{th} A1 $(X) \ge 10$ or $(X) > 9$ or $[10,20]$ They get A0 if they write $P(X \ge 10/X > 9)$ 10 $\le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X .		[8]
(b)			
	Alternative solution 1^{st} B0 $P(X \ge 11) = 1 - 0.9829 = 0.0171$ since no comment about the critical region 2^{nd} B1 a correct contextual statement.		

Question Number	- Chαmα	Ma	arks
Q5 (a		B1 M1 A1	(3)
(b	Y = the number of errors in 8000 words. $Y \sim \text{Po}(24)$ so use a Normal approx $Y \approx N(24, \sqrt{24}^2)$	M1 A1	
	Require $P(Y \le 20) = P\left(Z < \frac{20.5 - 24}{\sqrt{24}}\right)$	M1 M1	
	= P(Z < -0.714) $= 1 - 0.7611$	A1 M1	
	= 0.2389 awrt (0.237~0.239)	A1	(7)
	[N.B. Exact Po gives 0.242 and no \pm 0.5 gives 0.207]		[10]
(a	B1 for seeing or using Po(6) M1 for $1 - P(X \le 3)$ or $1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)]$ A1 awrt 0.849		
9	If B(2000, 0.003) is used and leads to awrt 0.849 allow B0 M1 A1 If no distribution indicated awrt 0.8488 scores B1M1A1 but any other awrt 0.849 score	es B0M	1A1
(b	1 st M1 for identifying the normal approximation 1 st A1 for [mean = 24] and [sd = $\sqrt{24}$ or var = 24]		
	These first two marks may be given if the following are seen in the standardisation formula: 24 $\sqrt{24}$ or awrt 4.90		
	2^{nd} M1 for attempting a continuity correction (20/ 28 \pm 0.5 is acceptable)		
	3 rd M1 for standardising using their mean and their standard deviation.		
	2^{nd} A1 correct z value awrt ± 0.71 or this may be awarded if see $\frac{20.5-24}{\sqrt{24}}$ or $\frac{27.5-24}{\sqrt{24}}$	-	
	4^{th} M1 for 1 - a probability from tables (must have an answer of < 0.5) 3^{rd} A1 answer awrt 3 sig fig in range $0.237 - 0.239$		

Ques		Scheme	Mark	(S
Q6	(a)	$P(A > 3) = \frac{2}{5} = 0.4$	B1	(1)
		$(0.4)^3$,= 0.064 or $\frac{8}{125}$	M1, A1	(2)
	(c)	$f(y) = \frac{d}{dy}(F(y)) = \begin{cases} \frac{3y^2}{125} & 0 \le y \le 5\\ 0 & otherwise \end{cases}$	M1A1	(2)
	(d)	(o omerwise	B1	
		Shape of curve and start at (0,0) Point (5, 0) labelled and curve between 0 and 5 and	B1	(2)
		5 $pdf \ge 0$		
	(e)	Mode = 5	B1	(1)
	(f)	$E(Y) = \int_0^5 \left(\frac{3y^3}{125}\right) dy = \left[\frac{3y^4}{500}\right]_0^5 = \frac{15}{4} \text{ or } 3.75$	M1M1A1	(3)
	(g)	$P(Y > 3) = \begin{cases} \int_{3}^{5} \frac{3y^2}{125} dy \\ \text{or } 1 - F(3) \end{cases} = 1 - \frac{27}{125} = \frac{98}{125} = 0.784$	M1A1	(2) [13]
	(a) (b)	B1 correct answer only(cao). Do not ignore subsequent working M1 for cubing their answer to part (a)		
	(c)	A1 cao M1 for attempt to differentiate the cdf. They must decrease the power by 1 A1 fully correct answer including 0 otherwise. Condone < signs		
	(d)	B1 for shape. Must curve the correct way and start at $(0,0)$. No need for $y = 0$ (patios) lines B1 for point $(5,0)$ labelled and pdf only existing between 0 and 5, may have $y=0$ (patios) for other values		
	(e)	B1 cao		
	(f)	1 st M1 for attempt to integrate their $yf(y) y^n \rightarrow y^{n+1}$. 2 nd M1 for attempt to use correct limits A1 cao		
	(g)	M1 for attempt to find $P(Y > 3)$.		
		e.g. writing $\int_{2}^{5} their f(y)$ must have correct limits		
		or writing $1 - F(3)$		

Ques	stion			
Num	ber	Scheme	Mark	
Q7	(a)	E(X) = 2 (by symmetry)	B1	(1)
	(b)	$0 \le x < 2$, gradient $= \frac{1}{2} = \frac{1}{4}$ and equation is $y = \frac{1}{4}x$ so $a = \frac{1}{4}$	B1	
		$b - \frac{1}{4}x$ passes through (4, 0) so $b = 1$	B1	(2)
	(c)	$E(X^{2}) = \int_{0}^{2} \left(\frac{1}{4}x^{3}\right) dx + \int_{2}^{4} \left(x^{2} - \frac{1}{4}x^{3}\right) dx$	M1 M1	
		$= \left[\frac{x^4}{16}\right]_0^2 + \left[\frac{x^3}{3} - \frac{x^4}{16}\right]_2^4$	A1	
		$= 1 + \frac{64 - 8}{3} - \frac{256 - 16}{16} = 4\frac{2}{3} \text{ or } \frac{14}{3}$	M1A1	
		Var(X) = E(X ²) - [E(X)] ² = $\frac{14}{3}$ - 2 ² , = $\frac{2}{3}$ (so $\sigma = \sqrt{\frac{2}{3}} = 0.816$) (*)	M1 A1cso	(7)
		$P(X \le q) = \int_{0}^{q} \frac{1}{4}x dx = \frac{1}{4},$ $\frac{q^2}{2} = 1$ so $q = \sqrt{2} = 1.414$ awrt 1.41	M1A1,A	1 (3)
	(e)	2- σ = 1.184 so 2 - σ , 2 + σ is wider than IQR, therefore greater than 0.5	M1, A1	(2) [15]
	(a)	B1 cao		[13]
	(c)	B1 for value of a. B1 for value of b 1^{st} M1 for attempt at $\int ax^3$ using their a. For attempt they need x^4 . Ignore limits.		
		2^{nd} M1 for attempt at $\int bx^2 - ax^3$ use their a and b. For attempt need to have either x^3 or	or x^4 . Ign	ore
		limits		
		1 st A1 correct integration for both parts 3 rd M1 for use of the correct limits on each part		
		2^{nd} A1 for either getting 1 and $3\frac{2}{3}$ or awrt 3.67 somewhere or $4\frac{2}{3}$ or awrt 4.67		
		4^{th} M1 for use of $E(X^2) - [E(X)]^2$ must add both parts for $E(X^2)$ and only have subtractions	cted the	
		mean ² once. You must see this working		
	(d)	3^{rd} A1 $\sigma = \sqrt{\frac{2}{3}}$ or $\sqrt{0.66667}$ or better with no incorrect working seen.		
	(4)	M1 for attempting to find LQ, integral of either part of $f(x)$ with their 'a' and 'b' = 0.25		
		Or their F(x) = 0.25 i.e. $\frac{ax^2}{2} = 0.25$ or $bx - \frac{ax^2}{2} + 4a - 2b = 0.25$ with their a and b)	
		If they add both parts of their $F(x)$, then they will get M0. 1 st A1 for a correct equation/expression using their 'a'		
	(e)	2^{nd} A1 for $\sqrt{2}$ or awrt 1.41		
	` ,	M1 for a reason based on their quartiles		
		• Possible reasons are P(2 - $\sigma < X < 2 + \sigma$)= 0.6498 allow awrt 0.65		
		• 1.184 < LQ(1.414) A1 for correct answer > 0.5		
		NB you must check the reason and award the method mark. A correct answer without a	correct	
		reason gets M0 A0		

Question Number	Scheme	Mark	(S
Q8 (a)	$X \sim \text{Po}(2)$ $P(X=4) = \frac{e^{-2} \times 2^4}{4!} = 0.0902$ awrt 0.09	M1 A1	(2)
(b)	$Y \sim \text{Po}(8)$ $P(Y > 10) = 1 - P(Y \le 10) = 1 - 0.8159 = 0.18411$ awrt 0.184	B1 M1A1	(3)
(c)	$F = \text{no. of faults in a piece of cloth of length } x$ $F \sim \text{Po}(x \times \frac{2}{15})$ $e^{-\frac{2x}{15}} = 0.80$ $e^{-\frac{2}{15} \times 1.65} = 0.8025, e^{-\frac{2}{15} \times 1.75} = 0.791$ These values are either side of 0.80 therefore $x = 1.7$ to 2 sf	M1A1 M1	(4)
(d)	Expected number with no faults $= 1200 \times 0.8 = 960$ Expected number with some faults $= 1200 \times 0.2 = 240$ So expected profit $= 960 \times 0.60 - 240 \times 1.50$, $= £216$	M1 A1 M1, A1	(4) [13]
(a)	M1 for use of Po(2) may be implied A1 awrt 0.09		
(b)	B1 for Po(8) seen or used M1 for 1 - P($Y \le 10$) oe A1 awrt 0.184		
(c)	1^{st} M1 for forming a suitable Poisson distribution of the form $e^{-\lambda} = 0.8$ 1^{st} A1 for use of lambda as $\frac{2x}{15}$ (this may appear after taking logs) 2^{nd} M1 for attempt to consider a range of values that will prove 1.7 is correct OR for use of logs to show lambda = 2^{nd} A1 correct solution only. Either get 1.7 from using logs or stating values either side		
SC	for $e^{-\frac{2}{15} \times 1.7} = 0.797 \approx 0.80$ $\therefore x = 1.7$ to 2 sf allow 2 nd M1A0		
(d)	1^{st} M1 for one of the following 1200 p or 1200 (1 – p) where p = 0.8 or 2/15. 1^{st} A1 for both expected values being correct or two correct expressions. 2^{nd} M1 for an attempt to find expected profit, must consider with and without faults 2^{nd} A1 correct answer only.		

June 2009 6691 Statistics S3 Mark Scheme

	stion nber	Scheme	M	⁄arks
Q1	(a)	Randomly select a number between 00 and 499 (001 and 500) select every 500 th person	B1 B1	(2)
	(bi)	Quota Advantage: Representative sample can be achieved (with small sample size)	B1	
		<u>Cheap</u> (costs kept to a minimum) <u>not</u> "quick" Administration relatively <u>easy</u> <u>Disadvantage</u> Not possible to estimate sampling errors (due to lack of randomness)	ы	
		Not a random process Judgment of interviewer can affect choice of sample – <u>bias</u> Non-response not recorded	B1	
	(bii)	Difficulties of defining controls e.g. social class Systematic		(2)
		Advantage: Simple or easy to use not "quick" or "cheap" or "efficient" It is suitable for large samples (not populations)	B1	(0)
		Disadvantage Only random if the ordered list is (truly) random Requires a list of the population <u>or</u> must assign a number to each member of the pop.	B1	(2) [6]
	(a)	1 st B1 for idea of using random numbers to select the first from1 - 500 (o.e.) 2 nd B1 for selecting every 500 th (name on the list)		
		If they are clearly trying to carry out stratified sample then score B0B0		
	(b)	Score B1 for any one line		
	(i)	1 st B1 for Quota advantage 2 nd B1 for Quota disadvantage		
	(ii)	3 rd B1 for Systematic Advantage 4 th B1 for Systematic Disadvantage		

Ques Num		Scheme	Mark	(S
Q2	(a)	Limits are $20.1 \pm 1.96 \times 0.5$	M1 B1	
		<u>(19.1, 21.1)</u>	A1cso	(3)
	(b)	98 % confidence limits are		
		$20.1 \pm 2.3263 \times \frac{0.5}{\sqrt{10}}$	M1 B1	
		<u>(19.7, 20.5)</u>	A1A1	(4)
	(c)	The growers claim is not correct Since 19.5 does not lie in the interval (19.7, 20.5)	B1 dB1	(2) [9]
				[0]
	(a)	M1 for $20.1 \pm z \times 0.5$. Need 20.1 and 0.5 in correct places with no $\sqrt{10}$		
		B1 for z = 1.96 (or better) A1 for awrt 19.1 and awrt 21.1 but must have scored both M1 and B1 [Correct answer only scores 3/3]		
	(b)	M1 for $20.1 \pm z \times \frac{0.5}{\sqrt{10}}$, need to see 20.1, 0.5 and $\sqrt{10}$ in correct places		
		B1 for $z = 2.3263$ (or better) 1^{st} A1 for awrt 19.7 2^{nd} A1 for awrt 20.5 [Correct answer only scores M1B0A1A1]		
	(c)	1 st B1 for rejection of the claim. Accept "unlikely" or "not correct" 2 nd dB1 Dependent on scoring 1 st B1 in this part for rejecting grower's claim for an argument that supports this. Allow comment on their 98% CI from (b)		

Ques	tion																
Num							Sc	hem	ie							Mar	ks
Q3	(a)																
				$A \mid E$		D	E	F	G	Н	I	J					
		BMI		1 6		8	4	5	7	2	9	10	_			M1	
		Or Finishing	g position	$\frac{10}{3}$ 5		9	7	6 4	10	9	7	8					
		1 IIIISIIIII	$\frac{d^2}{d^2}$	4 1		1	4	1	9	0	4	4	-				
		$\sum d^2 = 32$										1 -	1			M1	
		<u></u>	× 32														
		$r_s = 1 - \frac{6}{10}$	×99													M1 A1ft	İ
		= 0.806	06 (-0.80	0606)	ac	cept	$\pm \frac{1}{1}$	33 65					<u>awr1</u>	<u>t ± 0.80</u>	<u>)6</u>	A1	(5)
	(b)	$H_0: \rho = 0$	$, H_1 : \rho > 0,$													B1 B1	
		Critical va	alue is $(\pm)0$.5636												B1	
	, ,	`	0.5636 there the BMI th				_		-		suppo	rt for	doctor	s belief		M1 A1ft	(5)
	(c)		on is alread	_												B1	(1)
		The positi	on is unoug	y ruin	ica or		Ditit)II IS	1100	101111	uiiy u	100110	area				[11]
	(a)	1 st M1	for attempt														
		$2^{nd} M1$	for attempt	at \sum	$d^2 (\underline{n})$	<u>nust</u>	be u	ısing	g ranl	(s)						No rank	ing
		3 rd M1	for use of the expression			ormu	ıla v	vith	their	$\sum d$	² . If a	answe	er is no	t correct	t an	can scor	re 3 rd
		1 st A1ft	for a correct			n. ft	the	ir \sum	$\int d^2$	but o	nly if	all 3	Ms are	scored			
		2 nd A1	awrt <u>+</u> 0.80	6 (bu	sign	mus	t be	com	patib	ole wi	ith the	\sum	(d^2)				
	(b)	2 nd B1	for $\rho > 0$ (e	or <0	hut m	net b	ല വ	ne ta	il an	d con	cicten	t with	n their i	rankina)	\	M. H	
		1	for critical v											٠,	'	No H ₁ assume	one
			<u>+</u> 0.5636 if				•				1			ust oc		tail for 3	
			for a correc						_			_	-81				
			e.g. "reject	H ₀ ",	"in c	ritica	ıl re	gion	'', ''S	ignifi	cant r	esult'	,				
			May be im	-	-												
		A1ft	for correct of race/fitness									_					
			Allow posi												<u>)</u>		
	(c)	B1	for a corre	et and	relev	ant c	omi	men	t eith	er ha	sed or	ı the t	fact the	at the da	ta		
		D1	was origin "Quicker"	ally p	artiall	y or	dere	d <u>or</u>									

Question Number	Scheme	Marks
Q4	$X \sim N (55,3^2)$ therefore $\overline{X} \sim N (55, \frac{9}{8})$	B1 B1
	$P(\overline{X} > 57) = P(Z > \frac{57 - 55}{\sqrt{\frac{9}{8}}}) = P(Z > 1.8856)$	M1
	$ \begin{array}{r} $	M1 A1 [5]
	1 st B1 for $\overline{X} \sim$ normal and $\mu = 55$, may be implied but must be \overline{X} 2 nd B1 for $Var(\overline{X})$ or st. dev of \overline{X} e.g. $\overline{X} \sim N(55, \frac{9}{8})$ or $\overline{X} \sim N\left(55, \left(\frac{3}{\sqrt{8}}\right)^2\right)$ for B1B1 Condone use of X if they clearly mean \overline{X} so $X \sim N\left(55, \frac{9}{8}\right)$ is OK for B1B1	
	1^{st} M1 for an attempt to standardize with 57 and mean of 55 and their st. dev. $\neq 3$ 2^{nd} M1 for 1 - tables value. Must be trying to find a probability < 0.5 A1 for answers in the range $0.0294 \sim 0.0297$	
ALT	$\sum_{1}^{8} X_{i} \sim N(8 \times 55, 8 \times 3^{2})$ $1^{\text{st}} B1 \text{for } \sum X \sim \text{normal and mean} = 8 \times 55$ $2^{\text{nd}} B1 \text{for variance} = 8 \times 3^{2}$ $1^{\text{st}} M1 \text{for attempt to standardise with } 57 \times 8 \text{ , mean of } 55 \times 8 \text{ and their st dev } \neq 3$	

on er		Scher	me			Mar	ks
(a)	$\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 14}{2}$	$\frac{1+3\times8+4\times5}{1+3\times8+4\times5} = 1.0$	5			M1 A1	(2)
				5 x			
(b)	Using Expected frequen	$cy = 100 \times P(X = x)$	$=100 \times \frac{c}{x!}$	gives		M1	
	r = 36.743			awrt 36.743 or 3		Α1 Δ1	(3)
	S - 19.290			19.29 of awrt 1	9.290		(0)
(C)			del			B1	
	Number of goals	Frequency	Expected frequency				
	0	40	34.994				
	1	33					
	2	14	19.290		Ī		
	3	8	6.752	8.972443		M1	
	<u>></u> 4	5	2.221				
	v = 4 - 1 - 1 = 2 CR: $\chi_2^2(0.05) > 5.991$					B1ft B1	
	-	$(13-8)^2$ $(13-8)^2$	$(3.972443)^2$			M1	
	$\sum {E} = {34.99}$						
	= 4 356			.+1.4508+1.80	789]	A1	
	Not in critical region	`	,			A1 ft	(7)
	Number of goals scored	can follow a Poissoi	n distribution / ma	nagers claim is ju	istified	/	
							[12]
(a)	*			erator seen			
				and 1.1.0 (10.0)	0.017)		
(b)	M1 for use of correct f	ormula (It their mea	n). 1° A1 for r , 2	Z^{**} A1 for s (19.2)	9 OK)		
(c)					alas ai a m		
	1 st M1 for an attempt	to pool ≥ 4	_		ciusion		
	2^{nd} B1ft for $n - 1 - 1 = 2$	i.e realising that the	y must subtract 2	from their <i>n</i>			
	2 nd M1 for an attempt a		least 2 correct exp	pressions/values ((to 3sf)		
			ad on thair tast sts	itistic and their or	, that		
	mentions goals	or manager. Deper	ndent on 2 nd M1	mone and men ev	v uiat		
				wed hy "manager	'c		
			significant 10110V	vou by manager	S		
	(c) (a) (b)	a) $\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 14}{100}$ b) Using Expected frequen $r = 36.743$ $s = 19.290$ (c) H_0 : Poisson distribution H_1 : Poisson distribution Number of goals 0 1 2 3 ≥ 4 $v = 4 - 1 - 1 = 2$ $CR : \chi_2^2(0.05) > 5.991$ $\sum \frac{(O - E)^2}{E} = \frac{(40 - 34.9)}{34.99}$ $= 4.356$. Not in critical region Number of goals scored of the content of th	a) $\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 14 + 3 \times 8 + 4 \times 5}{100} = 1.0$ b) Using Expected frequency = $100 \times P(X = x)$ $r = 36.743$ $s = 19.290$ C) H ₀ : Poisson distribution is a suitable model H ₁ : Poisson distribution is not a suitable model H ₁ : Poisson distribution is not a suitable model H ₁ : Poisson distribution is not a suitable model H ₂ : Poisson distribution is not a suitable model H ₃ : Poisson distribution is not a suitable model H ₄ : Poisson distribution is not a suitable model H ₄ : Poisson distribution is not a suitable model H ₄ : Poisson distribution is not a suitable model H ₄ : Poisson distribution is not a suitable model H ₄ : Poisson distribution is not a suitable model H ₄ : Poisson distribution is not a suitable model H ₄ : Poisson H ₄ : Poisson distribution is not a suitable model H ₄ :	a) $\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 14 + 3 \times 8 + 4 \times 5}{100} = 1.05$ b) Using Expected frequency = $100 \times P(X = x) = 100 \times \frac{e^{-1.05} \cdot 1.0}{x!}$ $r = 36.743$ $s = 19.290$ c) H ₀ : Poisson distribution is a suitable model H ₁ : Poisson distribution is not a suitable model $\frac{\text{Number of goals}}{0 40 34.994} = \frac{\text{Expected frequency}}{0 40 34.994}$ $\frac{1}{333} = \frac{36.743}{34.994}$ $\frac{2}{33} = \frac{14}{35} = \frac{19.290}{338}$ $\frac{2}{388} = \frac{6.752}{34.9937}$ $\frac{2}{5} = \frac{(40 - 34.9937)^2}{34.9937} + \dots + \frac{(13 - 8.972443)^2}{8.972443}$ $\frac{2}{[=0.7161 \dots + 0.3813 \dots + $	a) $\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 14 + 3 \times 8 + 4 \times 5}{100} = 1.05$ Using Expected frequency = $100 \times P(X = x) = 100 \times \frac{e^{-1.05} 1.05^x}{x!}$ gives $r = 36.743$ gives $r = 36.743$ gives awrt 36.743 or 36.743 gives $r = 36.743$ gives $r = 36.743$ gives awrt 36.743 or 36.743 gives $r = 36.743$ gives $r = 36.7$	scheme a) $\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 14 + 3 \times 8 + 4 \times 5}{100} = 1.05$ b) Using Expected frequency = $100 \times P(X = x) = 100 \times \frac{e^{-1.05} \cdot 1.05^x}{x!}$ gives $r = 36.743$ awrt 36.743 or 36.744 19.290 19.29 or awrt 19.290 c) H ₀ : Poisson distribution is a suitable model H ₁ : Poisson distribution is not a suitable model $\frac{\text{Number of goals}}{0 40 34.994} = \frac{\text{Expected frequency frequency frequency }}{0 40 34.994} = \frac{1}{333} = \frac{36.743}{34.994} = \frac{1}{34.994} = \frac{1}{34.9937} = \frac{1}{34.9937} + \dots + \frac{(13 - 8.972443)^2}{8.972443} = \frac{(-7.161 + 0.3813 + 1.4508 + 1.80789]}{(-7.161 + 0.3813 + 1.4508 + 1.80789]} = \frac{4.356}{34.9937} = \frac{(-7.161 + 0.3813 + 1.4508 + 1.80789]}{(-7.161 + 0.3813 + 1.4508 + 1.80789]} = \frac{1}{34.9937} = 1$	Somewhat Scheme a) $\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 14 + 3 \times 8 + 4 \times 5}{100} = 1.05$ b) Using Expected frequency = $100 \times P(X = x) = 100 \times \frac{e^{-1.05}1.05^x}{x!}$ gives $r = 36.743$ awrt 36.743 or 36.744 A1 3×9.990 c) H_0 : Poisson distribution is a suitable model H_1 : Poisson distribution is not a suitable model $\frac{Number \text{ of }}{\text{goals}} \frac{Frequency}{\text{frequency}} \frac{Fxpected}{\text{frequency}}$ 0 40 34.994 1 33 36.743 2 14 19.290 $\frac{3}{3} \times 8 = 6.752$ $\frac{3}{2} \times 4 \times 5 = 2.221$ MI $\frac{v = 4 - 1 - 1 = 2}{CR: \chi_2^2(0.05) > 5.991}$ $\frac{v = 4.356}{S} = \frac{(40 - 34.9937)^2}{(40 - 34.9937)^2} + \dots + \frac{(13 - 8.972443)^2}{(13 - 8.972443)^2}$ $\frac{1}{8.972443} = \frac{4.356}{S} = \frac{4.356}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} = \frac{4.356}{S} = \frac{(40 - 34.9937)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} = \frac{(40 - 34.9937)^2}{S} + \dots + \frac{(13 - 8.972443)^2}{S} = \frac{(40 - 34.9937)^2}{S} = (40 - 34.9937)^$

Question Number	Scheme	Marks
Q6 (a)	$\mu_{\rm U}$ ~ mean length of upper shore limpets, $\mu_{\rm L}$ ~ mean length of lower shore limpets	
	$H_0: \mu_u = \mu_L$ $H_1: \mu_u < \mu_L$ both	B1
		M1
	s.e. = $\sqrt{\frac{0.42^2}{120} + \frac{0.67^2}{150}}$	A1
	$\begin{vmatrix} 120 & 150 \\ = 0.0668 \end{vmatrix}$	AI
	$z = \frac{5.05 - 4.97}{0.0668} = (\pm)1.1975$ awrt ± 1.20	dM1 A1
	Critical region is $z \ge 1.6449$, or probability = awrt (0.115 or 0.116) $z = \pm 1.6449$	B1
	$(1.1975 < 1.6449)$ therefore not in critical region / accept H_0 /not significant (or $P(Z \ge 1.1975) = 0.1151$, $0.1151 > 0.05$ or z not in critical region)	M1
	There is no evidence that the limpets on the upper shore are shorter than the limpets on the lower shore.	A1 (8)
(1.)	Assume the populations or variables are independent	B1
(b)	Standard deviation of sample = standard deviation of population [Mention of Central Limit Theorem does NOT score the mark]	(2) [10]
(a)	1 st B1 If μ_1, μ_2 used then it must be clear which refers to upper shore. Accept sensible choice of letters such as u and l .	
	1 st M1 Condone minor slips e.g. $\frac{0.67^2}{120}$ or $\frac{0.67}{150} + \frac{0.42^2}{120}$ etc i.e. swapped <i>n</i> or one	
	sd and one variance but M0 for $\sqrt{\frac{0.67}{150} + \frac{0.42}{120}}$	
	1 st A1 can be scored for a fully correct expression. May be implied by awrt 1.20	
	2 nd dM1 is dependent upon the 1 st M1 but can ft their se value if this mark is scored.	
	$2^{\text{nd}} \text{ A1} \text{for awrt } (\pm) \ 1.20$	
	3 rd M1 for a correct statement based on their z value and their cv. No cv is M0A0 If using probability they must compare their p (<0.5) with 0.05 (o.e) so can allow 0.884< 0.95 to score this 3 rd M1 mark. May be implied by their contextual statement and M1A0 is possible.	
(b)	3 rd A1 for a correct comment to accept null hypothesis that mentions <u>length</u> of <u>limpets</u> on the two <u>shores</u> .	
	1 st B1 for one correct statement. Accept "samples are independent"	
	2 nd B1 for both statements	

Question Number	Scheme	Marks
Q7 (a)	Estimate of Mean = $\frac{600.9}{5}$ = 120.18 Estimate of Variance = $\frac{1}{4}$ { 72216.31 - $\frac{600.9^2}{5}$ } or $\frac{0.148}{4}$ = 0.037 P(-0.05 < μ - $\hat{\mu}$ < 0.05) = 0.90 or P(-0.05 < \overline{X} - μ < 0.05) = 0.90 [\leq is OK] $\frac{0.05}{0.2}$ = 1.6449	M1A1 M1 A1ft A1 (5) B1 M1 A1
	$ \frac{\sqrt{n}}{n} = \frac{1.6449^2 \times 0.2^2}{0.05^2} $ $ n = 43.29 $ $ n = 44 $	dM1 A1 A1 (6) [11]
(a)	1 st M1 for an attempt at $\sum x$ (accept 600 to 1sf) 1 st A1 for $\frac{600.9}{5}$ = awrt 120 or awrt 120.2. No working give M1A1 for awrt 120.2 2 nd M1 for the use of a correct formula including a reasonable attempt at $\sum x^2$ (Accept 70 000 to 1sf) or $\sum (x-\bar{x})^2 = 0.15$ (to 2 dp) 2 nd A1ft for a correct expression with correct $\sum x^2$ but can ft their mean (for expression - no need to check values if it is incorrect) 3 rd A1 for 0.037 Correct answer with no working scores 3/3 for variance B1 for a correct probability statement or "width of 90% CI = 0.05×2 = 0.1" 1 st M1 for $\frac{0.05}{\frac{0.2}{\sqrt{n}}} = z$ value or $2 \times \frac{0.2}{\sqrt{n}} \times z = 0.1$ Condone 0.5 instead of 0.05 or missing 2 or 0.05 for 0.1 for M1 1 st A1 for a correct equation including 1.6449 2 nd dM1 Dependent upon 1 st M1 for rearranging to get $n = \dots$ Must see "squaring" 2 nd A1 for $n = \text{awrt } 43.3$ 3 rd A1 for rounding up to get $n = 44$ Using e.g.1.645 instead of 1.6449 can score all the marks except the 1 st A1	1 st B1 may be implied by 1 st A1 scored or correct equation.

Question Number	Scheme	Marks
Q8 (a)	$E(4X-3Y)=4E(X) - 3E(Y)$ = $4 \times 30 - 3 \times 20$ = 60	M1 A1 (2)
(b)	Var(4X-3Y) = 16 Var(X) + 9 Var(Y) = 16 × 9 + 9 × 4 = 180	M1; M1 A1 (3)
(c)	$E(B) = 80$ Var $(B) = 16$ $E(B - A) = 20$ $Var (B - A) = 196$ $E(B)-E(A)$ ft on 180 and 16 $P(B - A > 0) = P\left(Z > \frac{-20}{\sqrt{196}}\right) = [P(Z > -1.428)]$ stand. using their mean and var $= 0.923$ awrt $0.923 - 0.924$	B1 B1 M1 A1ft dM1 A1 (6)
(a)	M1 for correct use of $E(aX + bY)$ formula	
(b)	1 st M1 for 16Var(X) or 9Var(Y) 2 nd M1 for adding variances Key points are the 16, 9 and +. Allow slip e.g using Var(X)=4 etc to score Ms	
(c)	1st M1 for attempting $B - A$ and $E(B - A)$ or $A - B$ and $E(A - B)$ This mark may be implied by an attempt at a correct probability e.g. $P\left(Z > \frac{0 - (80 - 60)}{\sqrt{180 + 16}}\right)$. To be implied we must see the "0" 1^{st} A1ft for $Var(B - A)$ can ft their $Var(A) = 180$ and their $Var(B) = 16$ 2^{nd} dM1 Dependent upon the 1^{st} M1 in part (c). for attempting a correct probability i.e. $P(B-A>0)$ or $P(A-B<0)$ and standardising with their mean and variance. They must standardise properly with the 0 to score this mark 2^{nd} A1 for awrt $0.923 \sim 0.924$	

June 2009 6686 Statistics S4 Mark Scheme

Question Number	Scheme	Marks
Q1	H ₀ : $\mu = 5$; H ₁ : $\mu < 5$ both CR: $t_9(0.01) > 2.821$ $\bar{x} = 4.91$ $s^2 = \frac{1}{9} \left(241.2 - \frac{49.1^2}{10} \right) = 0.0132222$ $t = \frac{ 4.91 - 5 }{\sqrt{0.013222}} = \pm 2.475$ Since 2.475 is not in the critical region there is insufficient evidence to reject H ₀ and conclude that the mean diameter of the bolts is not less than (not equal to) 5mm.	B1 B1 B1 M1 A1 M1 A1

Ques Num		Scheme	Mar	ks
Q2	(a)	The differences are normally distributed	B1	/1)
	(b)	The data is collected in pairs or small sample size and variance unknown or samples not independent	B1	(1)(1)
	(c)	<i>d</i> : 2.5, 1.6, 1.6, -1.9, -0.6, 4.5 at least 2 correct	M1	
		$(\Sigma d = 7.7, \Sigma d^2 = 35.59)$ $\overline{d} = \pm 1.2833, \text{ sd} = 2.2675. (Var = 5.141)$	A1, A1	
		H ₀ : $\mu_d = 0$, H ₁ : $\mu_d > 0$ (H ₁ : $\mu_d < 0$ if d - 2.5, -1.6, -1.6 etc) both depend on their d's	B1	
		$t = \frac{\pm 1.2833\sqrt{6}}{2.2675} = \pm 1.386$ formula and substitution, 1.38 – 1.39	M1, A1	
		Critical value $t_5(5\%) = 2.015$ (1 tail)	B1	
		Not significant. Insufficient evidence to support that the device reduces CO ₂ emissions.	A1 ft	(8)
	(d)	The idea that the device reduces $C0_2$ emissions has been rejected when in fact it does reduce emissions. OR	B1 B1	
		Concluding that the device does not reduce emissions when in fact it does (if not in context can get B1 only)		(2)
				[12]
		(b) Allow because the same car has been used (c) awrt ± 1.28 , 2.27		

Question Number	Scheme	Marl	KS
3 (a)	Size is the probability of H_0 being rejected when it is in fact true. or $P(\text{reject }H_0/H_0 \text{ is true})$ oe	B1	(1)
(b)	The power of the test is the probability of rejecting H_0 when H_1 is true. or $P(\text{ rejecting } H_0/H_1 \text{ is true}) / P(\text{ rejecting } H_0/H_0 \text{ is false})$ oe	B1	(1)
(c)	$X \sim B(12,0.5)$ $P(X \le 2) = 0.0193$ $P(X \ge 10) = 0.0193$	B1 M1	
(d)(i)	$\therefore \text{ critical region is } \{X \le 2 \cup X \ge 10\}$	A1A1	(4)
(ii)	P(Type II error) = $P(3 \le X \le 9 \mid p = 0.4)$ = $P(X \le 9) - P(X \le 2)$ = $0.9972 - 0.0834$ = 0.9138	M1 M1dep	
(e)	Power = $1 - 0.9138$ = 0.0862	B1 ft	(4)
	Increase the sample size Increase the significance level/larger critical region	B1 B1	(2) [12]
Notes	(d) (i) first M1 for either correct area or follow through from their critical region 2nd M1 dependent on them having the first M1. for finding their area correctly A1 cao (ii) B1 follow through from their (i)		

Questio Numbe		Scheme	N	/arks	
Q4 ((a)	$H_0: \sigma_A^2 = \sigma_B^2, \ H_1: \sigma_A^2 \neq \sigma_B^2$	B1		
		critical values $F_{12,8} = 3.28$ and $\frac{1}{F_{8,12}} = 0.35$	B1		
		$\frac{s_B^2}{s_A^2} = 2.40 \left(\frac{s_A^2}{s_B^2} = 0.416\right)$	M1A	1	
		Since 2.40 (0.416) is not in the critical region we accept H_0 and conclude there is no evidence that the two variances are different.	A1ft		(5)
((b)				(0)
		$S_p^2 = \frac{8 \times 1.02 + 12 \times 2.45}{20}$	M1		
		= 1.878	A1		
		$(27.94 - 25.54) \pm 2.086 \times \sqrt{1.878} \times \sqrt{\frac{1}{9} + \frac{1}{13}}$	B1M	1 A1f	t
		(1.16, 3.64)	A1 /		(7)
((c)	To calculate the confidence interval the variances need to be equal. In part (a) the test showed they are equal.	B1 B1		(0)
					(2)
				[1	14]

Que: Num	stion ber	Scheme	Marks
Q5	(a)	95% confidence interval for μ is $560 \pm t_{14}(2.5\%) \sqrt{\frac{25.2}{15}} = 560 \pm 2.145 \sqrt{\frac{25.2}{15}} = (557.2, 562.8)$	B1 M1 A1 A1 (4)
	(b)	95% confidence interval for σ^2 is $5.629 < \frac{14 \times 25.2}{\sigma^2} < 26.119$ $\sigma^2 < 62.675 \ \sigma^2 > 13.507$ $13.507 < \sigma^2 < 62.675$ awrt 13.5, 62.7	B1, M1, B1 A1, A1 (5)
	(c)	Require $P(X > 565) = P\left(Z > \frac{565 - \mu}{\sigma}\right)$ to be as large as possible OR $\frac{565 - \mu}{\sigma}$ to be as small as possible; both imply highest σ and μ . $\frac{565 - 562.8}{\sqrt{62.675}} = 0.28$	M1 M1A1
		$P(Z > 0.28) = 1 - 0.6103 = 0.3897$ awrt $0.39 - 0.40$ (c) M1 for using their largest σ and μ M1 for using $\frac{x - \mu}{\sigma}$ M1 1 – their prob	M1 A1 (5)

Ques		Scheme	Marks	5
Q6	(a)	$E(\frac{2}{3}X_1 + \frac{1}{2}X_2 + \frac{5}{6}X_3) = \frac{2}{3} \times \frac{k}{2} + \frac{1}{2} \times \frac{k}{2} + \frac{5}{6} \times \frac{k}{2} = k$ $E(X_1 + X_2 + X_3) = k \implies \text{unbiased}$	M1 A1 B1	(3)
	(b)	$E(aX_1 + bX_2) = a\frac{k}{2} + b\frac{k}{2} = k$ $a + b = 2$	M1 A1	
		$a+b=2$ $Var(aX_1 + bX_2) = a^2 \frac{k^2}{12} + b^2 \frac{k^2}{12}$	M1A1	
		$=a^2\frac{k^2}{k^2}+(2-a)^2\frac{k^2}{k^2}$	M1	
		$=(2a^2-4a+4)\frac{k^2}{12}$		
	(c)	$12 (2a^{2} - 4a + 4) \frac{k^{2}}{12}$ $= (a^{2} - 2a + 2) \frac{k^{2}}{6}$ (*) since answer given	A1 cso	(6)
		Min value when $(2a-2)\frac{k^2}{6} = 0$ $\frac{d}{da}(Var) = 0$, all correct, condone missing $\frac{k^2}{6}$	M1 A1	
		$\Rightarrow 2a - 2 = 0$ $a = 1, b = 1.$	A1A1	
		$\frac{d^2(Var)}{da^2} = \frac{2k^2}{6} > 0 \text{since } k^2 > 0 \text{ therefore it is a minimum}$	M1	
		$\min \text{ variance} = (1-2+2)\frac{k^2}{6}$		
		$=\frac{k^2}{6}$	B1	
		Alternative		(6)
		$\frac{k^2}{6}(a-1)^2 - \frac{k^2}{6} + \frac{2k^2}{6}$	M1 A1	
		$\frac{k^{2}}{6}(a-1)^{2} + \frac{k^{2}}{6}$ Min when $\frac{k^{2}}{6}(a-1)^{2} = 0$	M1	
			A1A1	
		$a = 1 b = 1$ $min von = \frac{1^2}{6}$	B1	
		$\min \text{ var} = k^2/6$		

June 2009 6689 Decision Mathematics D1 Mark Scheme

Question Number	Scheme	Ma	rks
Q1 (a) (b)	AD, AE, DB; DC, CF	M1 A1 A1	; (3)
	F B C	B1	(1)
(c)	W. 1. 505 (L.)	B1	(1)
	Weight 595 (km)		[5]
	Notes: (a) 1M1: Using Prim – first 2 arcs probably but condone starting from another vertex. 1A1: first three arcs correct 2A1: all correct. (b) 1B1: CAO (c) 1B1: CAO condone lack of km. Apply the misread rule, if not listing arcs or not starting at A. So for M1 (only) Accept numbers across the top (condoning absence of 6) Accept full vertex listing Accept full arc listing starting from vertex other than A [AD AE DB DC CF] {1 4 5 2 3 6} ADEBCF BD AD AE CD CF {3 1 5 2 4 6} BDAECF CD AD AE BD CF {3 5 1 2 4 6} CDAEBF DA AE DB CD CF {2 4 5 1 3 6} DAEBCF EA AD DB DC CF {2 4 5 3 1 6} EADBCF FC CD AD AE BD {4 6 2 3 5 1} FCDAEB		

Question Number	Scheme		Mark	(S
Q2 (a)	220			
()	$\frac{230}{60} = 3.8\dot{3}$ so 4 needed	M1	A1	(2)
(b)	Bin 1: 32 17 9	M1	A1	
	Bin 2: 45 12 Bin 3: 23 28	A1 A1		
	Bin 4: 38 16	' ' '		(4)
	Bin 5: 10			
(c)	a a Din 1: 22 29	M1	Δ1	
	e.g. Bin 1: 32 28 Bin 2: 38 12 10	IVII	Λı	
	Bin 3: 45 9			
	Bin 4: 23 17 16	A1		(3)
				[9]
	Notes:			
	(a) 1M1: Their 230 divided by 60, some evidence of correct method 3.8			
	enough. 1A1: cso 4.			
	(b) 1M1: Use of first fit. Probably 32, 45 and 17 correctly placed.			
	1A1: 32, 45, 17, 23, 38 and 28 placed correctly			
	2A1: 32, 45, 17, 23, 38, 28, 16, 9 placed correctly.			
	3A1: cao			
	(c) 1M1: Use of full bin – at least one full bin found and 5 numbers			
	placed. 1A1: 2 full bins found			
	Eg [32+28 and 38+12+10] [23+28+9 and 16+12+32]			
	[32+28 and 23+16+12+9] [38+12+10 and 23+28+9]			
	2A1: A 4 bin solution found.			
	Special case for (b) misread using first fit decreasing.			
	Give M1A1 (max) Bin 1: 45 12			
	Bin 1: 45 12 Bin 2: 38 17			
	Bin 3: 32 28			
	Bin 4: 23 16 10 9			
	M1 for placing 45, 38, 32, 28 and 23 correctly A1 for cao.			

Question Number	Scheme	Mar	ks
Q3 (a)	H-2=M-5=R-4 change status to give	M1 A1	
(b)	C = 3 (E unmatched) $H = 2$ $M = 5$ $R = 4$ $S = 1$	A1	(3)
(c)	e.g. C is the only person who can do 3 and the only person who can do 6	B1	(1)
	e.g. $E - 5 = M - 2 = H - 1 = S - 3 = C - 6$ change status to give	M1 A1	
	C = 6 $E = 5$ $H = 1$ $M = 2$ $R = 4$ $S = 3$	A1	(3)
			[7]
	Notes:		
	(a) 1M1: Path from H to 4 1A1: correct path and change status		
	2A1: CAO must follow from correct path.		
	(b) 1B1: CAO or e.g reference to E 5 M 2 H 1 S		
	(c) 1M1: Path from E to 6		
	1A1: CAO do not penalise lack of change status a second time. 2A1: CAO must follow from a correct path		

Question Number	Scheme	Marks
Q4	$ \frac{M}{B} \frac{J}{B} = \frac{K}{B} \frac{H}{B} \frac{L}{B} = \frac{P}{N} \frac{N}{D} \frac{D}{B} $ $ \frac{B}{B} \frac{M}{B} = \frac{D}{B} \frac{H}{M} \frac{H}{M} \frac{H}{J} \frac{K}{K} \frac{L}{L} \frac{M}{M} \frac{P}{N} \frac{N}{D} \frac{E}{L} \frac{H}{J} \frac{H}{K} \frac{L}{M} \frac{M}{N} \frac{P}{P} \frac{H}{M} \frac$	M1 1A1 2A1ft 3A1ft 4A1 (5) M1 1A1 2A1ft
	Notes: (a) 1M1: quick sort, pivots, p, identified, two sublists one p. If choosing one pivot only per iteration, M1 only. 1A1: first pass correct, next pivot(s) chosen consistently. 2A1ft: second pass correct, next pivot(s) chosen consistently 3A1ft: third pass correct, next pivot(s) chosen consistently 4A1: cso List re-written or end statement made or each element been chosen as a pivot. (b) 1M1: binary search, choosing pivot rejecting half list. If using unordered list then M0. If choosing J M1 ony 1A1: first two passes correct, condone 'sticky'pivots here, bod. 2A1ft: third pass correct, pivots rejected. 3A1: cso, including success statement. Special case for (b) — If just one letter out of order, award maximum of M1A1A0A0	3A1 (4) [9]

Question Number	Scheme	Marks
Q5 (a)	CD + EG = 45 + 38 = 83 $CE + DG = 39 + 43 = 82 \leftarrow$ CG + DE = 65 + 35 = 100 Repeat CE and DG Length $625 + 82 = 707$ (m)	M1 1A1 2A1 3A1 4A1ft 5A1ft (6)
	DE (or 35) is the smallest So finish at C. New route 625 + 35 = 660 (m) Notes: (a) 1M1: Three pairings of their four odd nodes 1A1: one row correct	M1 A1ft A1ft=1B1 (3) [9]
	2A1: two rows correct 3A1: three rows correct 4A1ft: ft their least, but must be the correct shortest route arcs on network. (condone DG) 5A1ft: 625 + their least = a number. Condone lack of m (b) 1M1: Identifies their shortest from a choice of at least 2 rows. 1A1ft: ft from their least or indicates C. 2A1ft = 1Bft: correct for their least. (Indept of M mark)	

Question Number	Scheme	Marks
Q6 (a)	A 1 0 20 E 5 20 9 H 8 29 20 20 29 (36) 8 C 6 21 9 G 7 28 11 9 36 46 45 36 14 7 20 34 28 (30) (30) 17 46 45 36	M1 1A1 2A1ft 3A1ft 4A1ft
(b)	Route: A E H I Shortest distance from A to G is 28 km	5A1 B1ft [7]
	Notes: (a) 1M1: Small replacing big in the working values at C or F or G or I 1A1: Everything correct in boxes at A, B, D and F 2A1ft: ft boxes at E and C handled correctly but penalise order of labelling only once 3A1ft: ft boxes at G and H handled correctly but penalise order of labelling only once 4A1ft: ft boxes at I handled correctly but penalise order of labelling only once 5A1: route cao A E H I (b) 1B1ft: ft their final label at G condone lack of km	

Question Number	Scheme	Mar	ks
Q7 (a)	$7x + 5y \le 350$	M1 A1	(2)
(b)	$y \le 20$ e.g. make at most 20 small baskets $y \le 4x$ e.g. the number of small (y) baskets is at most 4 times the number of large baskets (x) . {E.g if $y = 40$, $x = 10$, 11, 12 etc. or if $x = 10$, $y = 40$, 39, 38}	B1 B1	(2)
(c)	(see graph next page) Draw three lines correctly Label R	B3, 2, 1, B1	0 (4)
(d)	(P=) 2x + 3y	B1	(1)
(e)	Profit line or point testing. x = 35.7 $y = 20$ precise point found. Need integers so optimal point in R is (35, 20); Profit (£)130	M1 A1 B1 B1;B1	(5) [14]
	Notes: (a) 1M1: Coefficients correct (condone swapped x and y coefficients) need 350 and any inequality 1A1: cso. (b) 1B1: cao 2B1: cao, test their statement, need both = and < aspects. (c) 1B1: One line drawn correctly 2B1: Two lines drawn correctly 3B1: Three lines drawn correctly. Check (10, 40) (0, 0) and axes 4B1: R correct, but allow if one line is slightly out (1 small square). (d) 1B1: cao accept an expression. (e) 1M1: Attempt at profit line or attempt to test at least two vertices in their feasible region. 1A1: Correct profit line or correct testing of at least three vertices. Point testing: (0,0) P=0; (5,20) P = 70; (50,0) P = 100 (35 \frac{5}{7}, 20) = (\frac{250}{7}, 20) P = 131 \frac{3}{7} = \frac{920}{7} also (35, 20) P = 130. Accept (36,20) P = 132 for M but not A. Objective line: Accept gradient of 1/m for M mark or line close to correct gradient. 1B1: cao – accept x co-ordinates which round to 35.7 2B1: cao 3B1: cao		

Question Number	Scheme	Marks
(c)		
	(Question 7 continued)	
	y small ♠	
	70	
	\mathbf{V}_{\cdot}	
	$\mathbf{y} = 4\mathbf{x}$	
	50 —	
	40	
	30	
	\mathcal{A}	
	y = 20	
	\mathcal{A}_{\cdot}	
	\mathcal{J}	
	7x + 5y = 350	
	10 20 30 40 50 60 70 large	

Question Number	Scheme	Marks	3
Q8 (a)	15 C(23) 38 53 3) 53 53 53 53 53 53 5	M1 A1	(4)
(b)	ACJL	B1 ((1)
(d)	Total float for $M = 56(ft) - 46 - 9 = 1$ Total float for $H = 47 - 12 - 21 = 14$	M1 A1ft B1 ((3)
	0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60	M1 A1	(4)
(e)	1pm day 16: C 1pm day 31: C F G H	B1ft B2ft,1ft,	0 (3)
		[15]

June 2009 6690 Decision Mathematics D2 Mark Scheme

Question Number	Scheme	Ma	arks
Q1 (a) (b)	There are more tasks than people. Adds a row of zeros	B1 B1	(1) (1)
(c)	$\begin{bmatrix} 15 & 11 & 14 & 12 \\ 13 & 8 & 17 & 13 \\ 14 & 9 & 13 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 3 & 1 \\ 5 & 0 & 9 & 5 \\ 5 & 0 & 4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \rightarrow \begin{bmatrix} 3 & 0 & 2 & 0 \\ 4 & 0 & 8 & 4 \\ 4 & 0 & 3 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $Either \begin{bmatrix} 3 & 3 & 2 & 0 \\ 1 & 0 & 5 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix}$	B1;M1	
(d)	$ \operatorname{Or} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 6 & 4 \\ 2 & 0 & 1 & 5 \\ 0 & 3 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 5 & 3 \\ 1 & 0 & 0 & 4 \\ 0 & 4 & 0 & 2 \end{bmatrix} \\ J-4, M-2, R-3, (D-1) $	A1	(6)
(u)	Minimum cost is (£)33.	B1	(1) [9]

Question Number	Scheme	Ma	rks
Q2 (a)	In the classical problem each vertex must be visited only once. In the practical problem each vertex must be visited at least once.	B2, 1,	0 (2)
(b)	A F D B E C A {1 4 6 3 5 2 } 21 + 38 + 58 + 36 + 70 + 34 = 257	M1 A1 A1	(3)
(c)	257 is the better upper bound, it is lower.	B1ft	(1)
(d)	R.M.S.T. C 34 A 21 F 38 D 67 E	M1 A1	
	Lower bound is $160 + 36 + 58 = 254$	M1A1 ((4)
(e)	Better lower bound is 254, it is higher	B1ft	
(f)	254 < optimal ≤ 257	B1	(2)
	Notes: (a) 1B1: Generous, on the right lines bod gets B1 2B1: cao, clear answer. (b) 1M1:Nearest Neighbour each vertex visited once (condone lack of return to start) 1A1: Correct route cao – must return to start. 2A1: 257 cao (c) 1B1ft: ft their lowest. (d) 1M1: Finding correct RMST (maybe implicit) 160 sufficient 1A1: cao tree or 160. 2M1:Adding 2 least arcs to B, 36 and 58 only 2A1: 254 (e) 1B1ft: ft their highest (f) 1B1: cao		[12]

Question Number	Scheme			
Q3 (a) (b)	Row minima {-5, -4, -2} row maximin = -2 Column maxima {1, 6, 13} col minimax = 1 -2 ≠ 1 therefore not stable. Column 1 dominates column 3, so column 3 can be deleted.			
(c)	A plays 1 A plays 2 A plays 3 B plays 1 5 -1 2 B plays 2 -6 4 -3	B1 B1	(2)	
(d)	Let B play row 1 with probability p and row 2 with probability (1-p) If A plays 1, B's expected winnings are 11p – 6 If A plays 2, B's expected winnings are 4 – 5p If A plays 3, B's expected winnings are 5p – 3	M1 A1		
	$ \begin{array}{c} $	M1 A1		
	$5p-3=4-5p$ $10p=7$ $p=\frac{7}{10}$	M1		
	B should play 1 with a probability of 0.7 2 with a probability of 0.3 and never play 3	A1		
	The value of the game is 0.5 to B	A1	(7) [13]	

Ques Num		Scheme	Mark	(S
Q4	(a)	Value of cut $C_1 = 34$; Value of cut $C_2 = 45$	B1; B1	(2)
	(b)	S B F G T or S B F E T – value 2 Maximum flow = 28	M1 A1 A1=B1	(3)
		Notes: (a) 1B1: cao 2B1: cao (b) 1M1: feasible flow-augmenting route and a value stated 1A1: a correct flow-augmenting route and value 1A1=B1: cao		[5]
Q5	(a)	$x = 0, \ y = 0, \ z = 2$	B2,1,0	(0)
	(b)	x = 0, y = 0, z = 2 $P - 2x - 4y + \frac{5}{4}r = 10$	M1 A1	(2)
				[4]
		Notes: (a) 1B1: Any 2 out of 3 values correct 2B1: All 3 values correct. (b) 1M1: One equal sign, modulus of coefficients correct. All the right ingredients. 1A1: cao – condone terms of zero coefficient		

Question Number	Scheme		Mark	S
Q6 (a)	The supply is equal to the demand	B1		(1)
(b)	A B C X 16 6 Y 9 8 Z 15	B1		(1)
(c)	$ \begin{array}{c cccc} A & B & C \\ \hline X & 16 - \theta & 6 + \theta \\ \hline Y & 9 - \theta & 8 + \theta \\ \hline Z & \theta & 15 - \theta \\ \hline \end{array} $ Value of $\theta = 9$, exiting cell is YB	M1 A1	A 1	(3)
(d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	A1	
	XC = 7 - 0 - 20 = -13 YA = 16 + 5 - 17 = 4 YB = 12 + 5 - 8 = 9 ZB = 10 + 11 - 8 = 13	A1		(3)
	A B C X 7-θ 15 θ Y 17 Z 9+θ 6-θ Value of θ = 6, entering cell XC, exiting cell ZC	M1	A 1	
	A B C X 1 15 6 Y 17 Z 15	A1		(3)
	Cost (£) 524	B1	[(1)

estion mber				Scheme		Marks
(a)	Stage	State (in £1000s)	Action (in £1000s)	Dest. (in £1000s)	Value (in £1000s)	
		250	250	0	300*	
	1	200	200	0	240*	
		150	150	0	180*	
		100	100	0	120*	
		50	50	0	60*	
		0	0	0	0*	
		250	280	0	200 + 0 = 280	
			200 150	50 100	235 + 60 = 295	
			100		190 + 120 = 310*	4 1 1 1 1 1
				150	125 + 180 = 305	1M1 A1
			50	200	65 + 240 = 305	
		200	0	250	0 + 300 = 300	
	2	200	200	0	235 + 0 = 235	
			150	50	190 + 60 = 250*	A1
			100	100	125 + 120 = 245	/ (1
			50	150	65 + 180 = 245	
			0	200	0 + 240 = 240	
		150	150	0	190 + 0 = 190*	2M1
			100	50	125 + 60 = 185	
			50	100	65 + 120 = 185	A1
			0	150	0 + 180 = 180	
		100	100	0	125 + 0 = 125*	A1
			50	50	65 + 60 = 125*	
			0	100	0 + 120 = 120	
		50	50	0	65 + 0 = 65*	
			0	50	0 + 60 = 60	
		0	0	0	0 + 0 = 0*	3M1
	3	250	250	0	300 + 0 = 300	A1ft
			200	50	230 + 65 = 295	
			150	100	170 + 125 = 295	
			100	150	110 + 120 = 300	
			50	200	55 + 250 = 305	
			0	250	0 + 310 = 310*	
	Maximu	um income £31	0 000 Scheme Invest (in £100	1 2 00s) 100 15	2 3 50 0	B1 B1 (
(b)	State:	Scheme being Money availab Amount chose	le to invest			B1 B1 B1

Question Number	Scheme	Marks
Q8	E.g. Add 6 to make all elements positive $\begin{bmatrix} 4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10 \end{bmatrix}$	B1
	Let Laura play 1, 2 and 3 with probabilities p_1 , p_2 and p_3 respectively Let $V = \text{value of game} + 6$	B1
	e.g. Maximise $P = V$ Subject to: $V - 4p_1 - 13p_2 - 7p_3 \le 0$ $V - 14p_1 - 10p_2 - p_3 \le 0$ $V - 5p_1 - 3p_2 - 10p_3 \le 0$ $p_1 + p_2 + p_3 \le 1$ $p_1, p_2, p_3 \ge 0$ Notes: 1B1: Making all elements positive 2B1: Defining variables 3B1: Objective, cao word and function 1M1: At least one constraint in terms of their variables, must be going down columns. Accept = here. 1A1ft: ft their table. One constraint in V correct. 2A1ft: ft their table. Two constraints in V correct. 3A1: CAO all correct .	B1 M1 A3,2ft,1ft ,0 (7) [7]
	Alt using x_i method Now additionally need: let $x_i = \frac{p_i}{v}$ for 2B1 minimise $(P) = x_1 + x_2 + x_3 = \frac{1}{v}$ subject to: $4x_1 + 13x_2 + 7x_3 \ge 1$ $14x_1 + 10x_2 + x_3 \ge 1$ $5x_1 + 3x_2 + 10x_3 \ge 1$ $x_i \ge 0$	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@inneydirect.com</u>
Order Code UA021531 Summer 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750 Registered Office: One90 High Holborn, London, WC1V 7BH